1. Definition. square root -
a square rout of $25=5$
a square rout of $25=-5$

$$
\begin{aligned}
& \sqrt{49}=7,-7 \\
& \sqrt{0}=0 \in \text { is nether profuse nor } \\
& \frac{7}{}=0 \text { notice }
\end{aligned}
$$

Definition. square root - b is a square rout of a if $b^{2}=a$.
$\rightarrow \sqrt{a}$: the principal/positive square root of a.
$\rightarrow-\sqrt{a}$: the negative square root of a.
examples

$$
\begin{array}{ll}
\sqrt{36}=6 & \sqrt{\frac{4}{9}}=11 \\
& =\frac{2}{3} \\
& \left(\frac{2}{3}\right)\left(\frac{2}{3}\right)=\frac{4}{9} \\
& \frac{\sqrt{4}}{\sqrt{9}}=\frac{2}{3}
\end{array}
$$

$\sqrt{-144}=$ imaginary

$$
\begin{aligned}
& -\sqrt{144}=-12 \\
& \sqrt{.04}=.2=\sqrt{\frac{4}{100}}=\sqrt{\frac{1}{25}}=\frac{1}{5}=.2 \\
& (.2)(.2)=.04
\end{aligned}
$$

$$
\begin{aligned}
& -\sqrt{-0.01}=\text { imaginary } \\
& -\sqrt{\frac{1}{9}}=-\frac{1}{3}
\end{aligned}
$$

2. Definition. $n^{\text {th }}$ root.
e.g. 2 is a square rootof $4 . \quad 2^{2}=4$

2 is a cube root of $8 \quad 2^{3}=8$
"1" "third root" of 8.
2 is a fourth rootofll $\quad 2^{4}=16$
Definition. $n^{\text {th }}$ root. b is nth root of a if $b^{n}=a$

$$
\begin{aligned}
\sqrt[n]{a} \quad \begin{aligned}
n=\text { index } \\
a=\text { radicand }
\end{aligned} & \rightarrow \begin{aligned}
& \text { if } n \text { is invisible, assume } \\
& \text { square rout. } \\
& \rightarrow \\
& \text { if not, then assume } \\
& n \text {th - root. }
\end{aligned} \\
& \rightarrow n \neq 1
\end{aligned}
$$

$$
\begin{aligned}
& \sqrt[4]{81} \Rightarrow 3^{4}=81 \rightarrow \sqrt[4]{81}=3 \\
& \sqrt[4]{625} \rightarrow 5^{4}=625 \rightarrow \sqrt[4]{625}=5 \\
& \sqrt[4]{-625} \rightarrow \text { imaginary }
\end{aligned}
$$

$$
\begin{aligned}
& \sqrt[3]{27} \Rightarrow 3^{3}=27 \rightarrow \sqrt[3]{27}=3 \\
& \sqrt[3]{125} \rightarrow 5^{3}=125 \rightarrow \sqrt[3]{125}=5 \\
& \sqrt[3]{-27} \rightarrow(-3)^{3}=27 \rightarrow \sqrt[3]{-27}=-3
\end{aligned}
$$

odd number of negative signs

$$
(-3)(-3)(-3)=
$$

$$
(+) \cdot(-5)=-
$$

$$
\begin{aligned}
& \sqrt[3]{-125}=-5 \\
& \sqrt[5]{32} \Rightarrow 2^{5}=32 \rightarrow \sqrt[5]{32}=2 \\
& \sqrt[5]{-32} \Rightarrow(-2)^{5}=-32 \rightarrow \sqrt[5]{-32}=-2
\end{aligned}
$$

$\sqrt[n]{a}$ - cannot find real root if n is even and a is negative index radicand

- if n is odd and a ispositive $\rightarrow \sqrt[n]{a}$ is positive
- if nis odd and a is negative $\rightarrow \sqrt[n]{a}$ is negative.
positive
- if n is even, then $\sqrt[n]{a}$ is the principal nth root of a
- if n is odd, then $\sqrt[n]{a}$ is the n-th root of a.

Evaluating $\sqrt[n]{a^{n}}$ - if n is $\operatorname{cd} d$, then

$$
\sqrt[n]{a^{n}}=a
$$

- if n is even, then

$$
\sqrt[n]{a^{n}}=|a|
$$

$$
\begin{aligned}
& \sqrt[8]{(78)^{8}}=|78|=78 \\
& \sqrt[5]{(3)^{5}}=3 \\
& \sqrt[4]{(3)^{4}}=|3|=3
\end{aligned}
$$

$$
\sqrt[4]{(-3)^{4}}=|-3|=3
$$

$$
\left.\begin{array}{l}
\sqrt[2]{(x+2)^{2}}=|x+2| \leftarrow \text { index is even, meed abishle } \\
\text { value }
\end{array}\right] \begin{aligned}
& \sqrt[3]{(x+2)^{3}}=x+2 \leftarrow \text { index is odd, don't need. } \\
& \sqrt[4]{x^{4}}=|x| \\
& \sqrt[8]{(a+b)^{8}}=|a+b| \\
& \sqrt[7]{(a+b)^{7}}=a+b
\end{aligned}
$$

$$
\begin{aligned}
& \sqrt{x^{4}}=\sqrt{\left(x^{2}\right)^{2}}=\left|x^{2}\right|=\begin{array}{ll}
x^{2} & \begin{array}{l}
\text { because } \\
\\
x^{2} \geq 0
\end{array}
\end{array} \\
& \sqrt[3]{x^{9}}=\sqrt{\left(x^{3}\right)^{3}}=x^{3} \\
& \sqrt{x^{6}}=\sqrt{\left(x^{3}\right)^{2}}=\left|x^{3}\right| \leqslant \text { keep absolute value }
\end{aligned}
$$

Radical Functions: $f(x)=\sqrt[n]{x}$ is called a radical function

Rational I Exponents:

$$
\begin{array}{ll}
a^{\frac{1}{n}}=\sqrt[n]{a} & a^{\frac{1}{3}}=\sqrt[3]{a} \\
\sqrt[5]{a}=a^{\frac{1}{5}}
\end{array}
$$

$$
\begin{aligned}
& a^{\frac{m}{n}}=\left(a^{m}\right)^{\frac{1}{n}}=\sqrt[n]{a^{m}} \\
& =\left(a^{\frac{1}{5}}\right)^{m}=(\sqrt[n]{a})^{m} \\
& * a^{\frac{m}{n}}=\sqrt[n]{a^{m}}=(\sqrt[n]{a})^{m} \\
& 7^{\frac{4}{5}}=\sqrt[5]{7^{4}}=(\sqrt[5]{7})^{4} \\
& (2 a+3)^{\frac{3}{2}}=\sqrt{(2 a+3)^{3}}=(\sqrt{2 a+3})^{3}
\end{aligned}
$$

