$$
\begin{aligned}
& \frac{x}{2}+\frac{1}{3}=\frac{x}{4} \\
& \text { Need LCD fur all terms } \\
& L \subset D \text { of }\{2,3,4\}=12 \\
& 12\left(\frac{x}{2}+\frac{1}{3}\right)=12\left(\frac{x}{4}\right) \\
& \frac{12 x}{2}+\frac{12}{3}=\frac{12 x}{4} \\
& 6 x+4=3 x \\
& \frac{-3 x-4 \quad-3 x-4}{6 x-3 x=-4} \\
& 3 x=-4 \\
& x=-\frac{4}{3} \\
& \text { Check } x=-\frac{4}{3} \\
& \begin{array}{l}
\left.\frac{\left(-\frac{4}{3}\right)}{2 / 1}+\frac{1}{3}=\frac{\left(-\frac{4}{3}\right)}{4}, \begin{array}{rl}
\frac{\frac{a}{b}}{\frac{a c}{d}} & =\frac{a}{b} \div \frac{c}{d} \\
& =\frac{a}{b} \cdot \frac{d}{c} \\
\left(-\frac{\psi^{2}}{3}\right)\left(\frac{1}{2}\right)+\frac{1}{3}=\left(-\frac{y}{3}\right)\left(\frac{1}{y}\right) \quad & =\frac{a d}{b c}
\end{array}\right]
\end{array} \\
& -\frac{2}{3}+\frac{1}{3}=-\frac{1}{3} \\
& -\frac{1}{3}=-\frac{1}{3} \rightarrow x=-\frac{4}{3} \text { is the solution }
\end{aligned}
$$

$$
\begin{aligned}
& \frac{3}{5}+\frac{1}{x}=\frac{1}{3} \\
& \operatorname{LCD} \text { of }\{5, x, 3\}=15 x \\
& 15 \times\left(\frac{3}{5}+\frac{1}{x}\right)=15 \times\left(\frac{1}{3}\right) \\
& \frac{45 x}{5}+\frac{15 x}{x}=\frac{15 x}{3} \\
& 9 x+45=5 x \\
& \begin{aligned}
-5 x-15 & -5 x-15 \\
4 x & =-15
\end{aligned} \\
& x=-\frac{15}{4} \\
& \text { Check } x=\frac{-15}{4} \\
& \frac{3}{5}+\frac{1}{\left(-\frac{15}{4}\right)}=\frac{1}{3} \\
& \frac{93}{15 \frac{3}{5}}+-\frac{4}{15}=\frac{11}{3} \frac{5}{15} \\
& \frac{1}{\frac{a}{b}}=1 \frac{a}{b} \\
& =1 \cdot \frac{b}{a} \\
& =\frac{b}{a} \\
& \frac{5}{15}=\frac{5}{15} \cup \rightarrow x=-\frac{15}{4} \text { is the solution }
\end{aligned}
$$

$$
\begin{aligned}
& \frac{3}{1}-\frac{6 w}{w+1}=\frac{6}{w+1} \\
& +\frac{6 u}{\omega+1}+\frac{6 \omega}{\omega+1} \\
& 3 / 1=\frac{6}{w+1}+\frac{6 w}{w+1} \\
& 3=\frac{6+6 u}{\omega+1} \\
& \frac{(w+1)}{(w+1)} 3=\frac{6+6 w}{w+1}\left(\frac{\Delta+1}{w+1}\right) \\
& \frac{3 \omega+3}{\omega+1}=\frac{6+6 u}{\omega+1} \\
& 8 w+3=\hbar+6 w \\
& -3 \omega-6-6-3 \omega \\
& -3=3 u \\
& -1=\omega \\
& \text { Check } u=-1 \\
& 3-\frac{6(-1)}{(-1)+1}=\frac{6}{(-1)+1} \\
& 3-\frac{-6}{0}=\frac{6}{0} \\
& \text { undefined } \\
& \text { cannot do anything } \\
& \text { いキーシ } \\
& \rightarrow \omega=-1 \\
& \text { is not a "solution" }
\end{aligned}
$$

$\omega=-1$ is an extraneous solution：
We can calculate it，but it doesn＇t check ＂potential solution＂

$$
(\omega+1)\left(3-\frac{6 w}{w+1}\right)=\left(\frac{6}{w+1}\right)(w+1)
$$

denominator $\neq 0$

$$
\begin{array}{r}
w+1 \neq 0 \\
-1-1 \\
\hline
\end{array}
$$

$$
w \neq-1
$$

* if we calculate $\omega=-1$, then we reject - 1 as a solution.

$$
\begin{aligned}
3(w+1)-6 v & =6 \\
3 w+3-6 w & =6 \\
-3 w+3 & =6 \\
-3 & -3 \\
-3 w & =3 \quad \frac{\text { Check } u=-1}{1}+-1
\end{aligned}
$$

$w=-1$, but $w \neq-1$, si no solution

$$
3-\frac{6 w}{w+1}=\frac{6}{w+1}
$$

1. Factor to denominator of all rational expressions. Identify any values of the variable for which the expression is undefined.
2. Identify the LCD of all terms in the equation.
3. Multiply both sides of the equation by the LCD.

$$
p^{2}-9=(p+3)(p-3)
$$

4. Solve the resulting equation.

$$
a^{2}-b^{2}=(a+b)(a-b)
$$

5. Check Potential solutions for extraneous.

$$
\begin{aligned}
& \frac{36}{p^{2}-9}=\frac{2 p}{p+3}-1 \\
& \frac{36}{(p+3)(p-3)}=\frac{2 p}{p+3}-\frac{1}{1} \\
& \text { LCD: }(p+3)(p-3) \\
& \angle C D \neq 0 \\
& (p+3)(p-3) \neq 0 \\
& p+3 \neq 0 \quad p-3 \pm 0 \\
& \text { pま-3 } \\
& (p+3)(p)\left(\frac{36}{(p+3)(p-3)}\right)=(p+3)\left(p^{-3}\right)\left(\frac{2 p}{p+3}-1\right) \\
& 36=\frac{2 p(p-3)(p+3)}{(p+3)}-(p+3)(p-3) \\
& 36=2 p(p-3)-(p+3)(p-3) \\
& 36=\left(2 p^{2}-6 p\right)-\left(p^{2}-9\right) \\
& 36=2 p^{2}-6 p-p^{2}+9 \\
& 36=p^{2}-6 p+9
\end{aligned}
$$

$$
\begin{gathered}
\frac{-36}{-36} \\
\hline 0=p^{2}-6 p-27 \\
0=(p-9)(p+3) \\
p-9=0
\end{gathered} p+3=0
$$

not a solution extraneous (solution

