Multiplication Property of Radkals

$$
\sqrt[n]{a b}
$$

Simplified form of a Radical

1. Radicand has no factor raised to a power greater than or equal to the index.
2. Radicand doesn 4 contain a fraction
3. No radicals in the denominator of the fraction.
e.g. Radicals not in simplified form

$$
\sqrt[3]{x^{4}} \leftarrow
$$

$$
\sqrt[7]{x^{7}} \longleftarrow
$$

$$
\sqrt{x^{10}} \longleftarrow
$$

$$
\begin{aligned}
& \sqrt{\frac{1}{4}} \longleftarrow \\
& \frac{1}{\sqrt{2}} \longleftarrow
\end{aligned}
$$

Supply the following

$$
\begin{aligned}
& \sqrt{x^{2}}= \\
& \sqrt{x^{4}}= \\
& \sqrt{x^{6}}= \\
& \sqrt{x^{100}}= \\
& \frac{\sqrt{x^{28}}}{\sqrt[3]{x^{6}}=} \begin{array}{l}
4 \\
\sqrt[3]{x^{9}}=
\end{array} \quad x^{4} \quad
\end{aligned}
$$

$$
\sqrt{x^{9}}=
$$

$$
\sqrt[3]{p^{17} q^{10}}=
$$

$$
\sqrt[3]{40 x^{3} y^{5} z^{7}}=
$$

When simplifying radicals

1. Use prime fretorization of a constant
2. Create two radicals and group powers

- in one radical largest powers divisible by index
- second radical powers smaller thminkex

3. Simplify first radical, bring second radical

From module.

$$
\sqrt{\frac{3 x^{4} y^{5}}{300 x y^{3}}}
$$

$5 t \sqrt[3]{751^{8} s t^{6}}$

Addition + Subtraction of Radicals

$$
6 \sqrt{11}+2 \sqrt{11}=
$$

$$
\begin{aligned}
& 3 \sqrt{x}-7 \sqrt{x}= \\
& \sqrt{3 a b}+\sqrt{3 a b}= \\
& -2 \sqrt[3]{a b}+7 \sqrt[3]{a b}-\sqrt[3]{a b}=
\end{aligned}
$$

$$
5 \sqrt[3]{x y}-3 \sqrt[3]{x y}+\sqrt{x y}=
$$

$$
\begin{array}{l|l}
3 \sqrt{8}+\sqrt{2} & 8 \sqrt{x^{3} y^{2}}-3 y \sqrt{x^{3}} \\
\end{array}
$$

Multipl:cation of Radicals

$$
\begin{aligned}
& (3 \sqrt{2})(5 \sqrt{6}) \\
& (3 \sqrt{2})(5 \sqrt[3]{6})=
\end{aligned}
$$

$$
(2 \sqrt[3]{4 a b})\left(5 \sqrt[3]{2 a^{2} b}\right)=
$$

$$
(\sqrt{5}+3 \sqrt{2})(2 \sqrt{5}-\sqrt{2})
$$

$$
(2 \sqrt{x}+\sqrt{y})(6-\sqrt{x}+8 \sqrt{y})=
$$

$$
(\sqrt{d}+3)^{2}
$$

$$
(5 \sqrt{y}-\sqrt{2})^{2}=
$$

$$
(\sqrt{3}+2)(\sqrt{3}-2)=
$$

