
*


By Pythagorean Theorim


$$
\left(\frac{1}{2}\right)^{2}+b^{2}=(1)^{2}
$$

$$
\frac{1}{4}+b^{2}=X\left(\frac{4}{4}\right)
$$

$$
-\frac{1}{4} \quad-\frac{1}{4}
$$

$$
\begin{aligned}
& b^{2}=\frac{3}{4} \\
& b= \pm \frac{\sqrt{3}}{\sqrt{4}}
\end{aligned}
$$

$$
b= \pm \frac{\sqrt{3}}{2}
$$

Reject $b=-\frac{\sqrt{3}}{2}$ because length

$$
b=\frac{\sqrt{3}}{2}
$$

Note: similar triangles are proportional

Note: similar triangles are proportional


Ratios of $30-60.90 \Delta$


The side ratios for similar triangles will always remain the same.
right $\Delta$
isosceles $\Delta$ - two sides are congruent
By Pythagorean Theorem

$$
\begin{aligned}
a^{2}+b^{2} & =c^{2} \\
(1)^{2}+(1)^{2} & =c^{2} \\
1+1 & =c^{2} \\
2 & =c^{2} \\
\pm \sqrt{2} & =c
\end{aligned}
$$

Reject $c=-\sqrt{2}$


$$
\text { For } 45-45-90 \Delta
$$


these are the side ratios

In general, consider a right $\Delta$

definitions

$$
\begin{aligned}
\text { hypotenuse } & \text { - the longest side of right } \triangle \\
& \text { - opposite right } \& \\
& \text {-in this case side } c, \overline{A B}
\end{aligned}
$$

opposite - side not touching the angle in question
-els. side $b$ is opposite $\angle B$ $\overline{A C}$ is opposite $\angle B$ side a is opposite $\angle A$
$\overline{B C}$ is opposite $\angle A$
adjacent - side that is touching the angle in question

- Cis, $\overline{B C}$ is adjacent to $\angle B$
side $a$ is adjacent to $\angle B$
$\overline{A C}$ is adjacent to $\angle A$
side $b$ is adjacreil to LA

$\overline{A C}=\operatorname{lime} \overline{A C}$
$A C=$ lensthif $A C$
define: Assume $\angle \theta$

$$
\begin{aligned}
& \sin \theta=\frac{\text { opposite }}{\text { hypotenuse }}=\frac{b}{c}=\frac{A C}{A B} \\
& \cos \theta=\frac{\text { adjacent }}{\text { hypotenuse }}=\frac{a}{c}=\frac{B C}{A B}
\end{aligned}
$$

"SOM CAM TOA"

$$
\begin{array}{ccc}
S_{H}^{0} & C_{M}^{A} & T_{A}^{\circ} \\
\sin (\angle A)=\frac{a}{c} & & \csc (\angle A)=\frac{c}{a} \\
\cos (\angle A)=\frac{b}{c} & & \sec (\angle A)=\frac{c}{b} \\
\tan (\angle A)=\frac{a}{b} & & \cot (\angle A)=\frac{b}{a}
\end{array}
$$

$$
\begin{aligned}
& \sin \theta=\frac{\text { opposite }}{\text { hypotenuse }} \\
& \csc \theta=\frac{\text { hypotenuse }}{\text { opposite }} \\
& \cos \theta=\frac{\text { adjacent }}{\text { hypotenuse }} \\
& \sec \theta=\frac{\text { hypotenuse }}{\text { adjacent }} \\
& \tan \theta=\frac{\text { opposite }}{\text { adjacent }} \\
& \cot \theta=\frac{\text { adjacent }}{\text { opposite }} \\
& \sin \left(60^{\circ}\right)=\frac{\sqrt{3}}{2} \quad \csc \left(60^{\circ}\right)=\frac{2}{\sqrt{3}} \cdot \frac{\sqrt{3}}{\sqrt{3}}=\frac{2 \sqrt{3}}{3} \\
& 8^{C} v=30^{\circ} \\
& \cos \left(60^{\circ}\right)=\frac{1}{2} \quad \sec \left(60^{\circ}\right)=\frac{2}{1}=2 \\
& \tan \left(60^{\circ}\right)=\frac{\sqrt{3}}{1}=\sqrt{3} \quad \cot \left(60^{\circ}\right)=\frac{1}{\sqrt{3}} \cdot \frac{\sqrt{3}}{\sqrt{3}}=\frac{\sqrt{3}}{3} \\
& \sin \left(30^{\circ}\right)=\frac{1}{2} \quad \csc \left(30^{\circ}\right)=\frac{2}{1}=2 \\
& \cos \left(30^{\circ}\right)=\frac{\sqrt{3}}{2} \quad \sec \left(30^{\circ}\right)=\frac{2}{\sqrt{3}}=\frac{2 \sqrt{3}}{3} \\
& \tan \left(30^{\circ}\right)=\frac{1}{\sqrt{3}} \cdot \frac{\sqrt{3}}{\sqrt{3}}=\frac{\sqrt{3}}{3} \quad \cot \left(30^{\circ}\right)=\frac{\sqrt{3}}{1}=\sqrt{3} \\
& \sin \left(60^{\circ}\right)=\cos \left(10^{\circ}\right) \\
& \sin \left(30^{\circ}\right)=\cos \left(60^{\circ}\right) \\
& \cos \theta=\sin (90-\theta) \\
& =\sin \left(\frac{\pi}{2}-\theta\right)
\end{aligned}
$$



$$
\begin{array}{ll}
\sin \left(45^{\circ}\right)=\frac{\sqrt{2}}{2} & \csc \left(45^{\circ}\right)=\frac{2}{\sqrt{2}} \frac{\sqrt{2}}{\sqrt{2}}=\frac{2 \sqrt{2}}{2}=\sqrt{2} \\
\cos \left(45^{\circ}\right)=\frac{\sqrt{2}}{2} & \sec \left(45^{\circ}\right)=\sqrt{2} \\
\tan \left(45^{\circ}\right)=\frac{\sqrt{2}}{\sqrt{2}}=1 & \cot \left(45^{\circ}\right)=1
\end{array}
$$

Solving Right $\Delta s$


Solve for $c$
side $C$ is hypotenuse 17,9 is opposite of $\angle A$

$$
m(L A)=30^{\circ}
$$

$$
\begin{aligned}
\rightarrow \sin (\angle A) & =\frac{\text { opp }}{\text { hyp }} \\
\frac{\sin \left(30^{\circ}\right)}{1} & =\frac{17.9}{c} \\
\operatorname{cisin}\left(30^{\circ}\right) & =17.9 \\
\frac{\operatorname{c\operatorname {sin}(30^{\circ })}}{\sin \left(30^{\circ}\right)} & =\frac{17.9}{\sin \left(30^{\circ}\right)} \\
c & =\frac{17.9}{\sin \left(30^{\circ}\right)}
\end{aligned}
$$

* Note i in this case, we know $\sin \left(30^{\circ}\right)=\frac{1}{2}$
* Only do this if angle is a special angle

$$
c=\frac{17.9}{\left(\frac{1}{2}\right)}
$$

$$
0,30,45,60,90, \quad c=17.9\left(\frac{2}{T}\right)=35.8
$$


$\frac{\text { Find } b}{\text { Given: } 32^{0}}$
$b$ is opposite
24 is adjacent

$$
\begin{aligned}
& \rightarrow \tan \theta=\frac{\text { opposite }}{\text { adjacent }} \\
& \frac{\tan \left(32^{\circ}\right)}{1}=\frac{b}{24} \\
& 24 \cdot \tan (32)=b
\end{aligned}
$$

* Note: We don't know tan (32), use a calculator
* Celalator is set to DEGREES

$$
\begin{gathered}
24 \cdot \tan (32)=b \\
b \approx 38,41
\end{gathered}
$$

