Line - straight set of points

- extends in both directions withat end
-one-dimensiona) (no thickness) denoted by two points on the line

$$
\ell \longleftrightarrow
$$

line l $\overleftrightarrow{A B}$ or $\overleftrightarrow{B A} \overleftrightarrow{A C}$ as long ar C is \leftrightarrow collinear to A and B
line segment - line w/ two endpoints

ray - line extended from a single point $\frac{\text { indefinitely }}{\uparrow}$ $\overrightarrow{A B}$ endpoint first for undefined length.
angle - intersection of two rays @a common endpoint

$\angle B$-intersection@ B
\rightarrow vertex point us point B
$\angle A B C$ or $\angle C B A$
Middle letters represut points of intersection

Greek Letters

$$
\begin{array}{ll}
\alpha=\text { alpha } & \gamma=\text { gamma } \theta=\text { theta } \\
\beta=\text { beta } & \delta=\text { delta }
\end{array}
$$

We measure angles in degrees

$$
\begin{aligned}
& \frac{1}{360} \text { of a full rotation. } \\
& 360^{\circ} \text { is fill rotation } \\
& 180^{\circ} \text { is straight angle } \\
& 90^{\circ} \text { is a right angle. }
\end{aligned}
$$

acute angle $=$ measures $0<m<90, m \in(0,90)$

$$
\begin{array}{lll}
\text { acute angle }=\text { measures } \\
\text { obtuse angle }= & 90<m<180, & m \in(90,180)
\end{array}
$$

* Angle Addition Postulaile

$$
m(L \theta)=m(L 1)+m(L 2)
$$

measure of langer angle

$$
=
$$

sum of measures of smaller, adjacent angles
supplementary angles -two angles whose sum is 180°
\qquad

$$
\begin{aligned}
& m(L 1)+m(\angle 2)=180^{\circ} \\
& \rightarrow L 1 \text { and } \angle 2 \\
& \text { arm supplementary angles }
\end{aligned}
$$

complementary angles two angles whose sum is 90°

$$
\begin{aligned}
& m(\angle 1)+m(\angle 2)=90^{\circ} \\
& \rightarrow \angle 1 a n d \angle 2
\end{aligned}
$$

are complementary angles

Reflex angles - two angles whose sum is 360°

$$
\begin{aligned}
& m(1)+m(L 2)=360^{\circ} \\
& \rightarrow \angle 1 \text { and }<2 \\
& \text { are reflex angles }
\end{aligned}
$$

- coterminal angles
they share same rays
supplement of 132° angle $\rightarrow 180^{\circ}-132^{\circ}=480^{\circ}$
complement of $57^{\circ} \mathrm{angle} \rightarrow 90^{\circ}-57^{\circ}=23^{\circ}$
reflex of 110° angle $\rightarrow 360^{\circ}-110^{\circ}=250^{\circ}$
angles
(rotating)
positrscangles are measured
 counter clockwise rotation
nesctiva chyles are mecoshred clockwise rotation
negative angle
poritlue ample + negative angles are coteminal angles
share both the initial side and terminal side.

Ald another full rotation of terminal side. in positive direction
new measure of angle

$$
\begin{aligned}
& 210^{\circ}+360^{\circ}=570^{\circ} \\
& 570^{\circ}+360=930^{\circ}
\end{aligned}
$$

$$
-150,210,570,930 \ldots
$$

$+360+360+360$
\rightarrow if we keep adding or subtrading 360° we ll have coterminal angles
Given $m(\theta \theta), m(\angle \theta)+360^{\circ} n$ for (oterminc) angles, where

$$
\begin{aligned}
& n \in\{ \pm 1, \pm 2, \pm 3, \pm 4, \ldots\} \\
& n \in \mathbb{Z}, n \neq 0
\end{aligned}
$$

Find two positive 4. two negative angles which are coterminal with 60°
positive

$$
\begin{aligned}
& 60^{\circ}+360^{\circ}=420^{\circ} \\
& 60^{\circ}+2\left(360^{\circ}\right)=60^{\circ}+720^{\circ} \\
&=780^{\circ} \\
& 60+10(360)=60+3600 \\
&=3660^{\circ}
\end{aligned}
$$

negative

$$
\begin{aligned}
60^{\circ}-360^{\circ} & =-300^{\circ} \\
60+(-2)(360) & =60^{\circ}-720^{\circ} \\
& =-660^{\circ}
\end{aligned}
$$

$$
\begin{aligned}
60+(-20)(360) & =60-7200 \\
& =-7140^{\circ}
\end{aligned}
$$

Angles in Radians
central circle -circle in x, y plane with uriginas the center

$$
\begin{aligned}
\rightarrow & x^{2}+y^{2}=r^{2} \\
& (x-h)^{2}+(y-k)^{2}=r^{2} \\
& \text { "general form" } \\
& (h, k)=(0,0)
\end{aligned}
$$

centralanste-vurtex is@ the center
radian - measure of an ale whose arc length is the same measure as the radius.

$$
m(L \theta)=\text { Iradian }
$$

Radian Measure of standard angles
$C=2 \pi r \rightarrow$ the radius can wrap around a circle 2π times
\rightarrow the radian measure of a circle 2π
Note: the full rotation of a circle is 360°

$$
\begin{aligned}
\rightarrow \quad 2 \pi \text { radians } & =360^{\circ} \\
\pi \text { radians } & =\frac{360^{\circ}}{2} \\
\pi \text { radians } & =180^{\circ} \\
\text { radian } & =\frac{180^{\circ}}{\pi}
\end{aligned}
$$

If you cunt to convert degrees to radians, multiply degrees by $\frac{\pi}{180}$

$$
\begin{aligned}
& 90^{\circ}\left(\frac{\pi}{180^{\circ}}\right)=\frac{\pi}{2} \text { radians } \\
& 60^{\circ}\left(\frac{\pi}{180^{\circ}}\right)=\frac{\pi}{3} \text { radians } \quad 120^{\circ}=\frac{120 \pi}{180}=\frac{2 \pi}{3} \\
& 30^{\circ}\left(\frac{\pi}{180^{\circ}}\right)=\frac{\pi}{6} \text { radians } \quad 270^{\circ}=\frac{270 \pi}{180}=\frac{3 \pi}{2} \\
& 45^{\circ}\left(\frac{\pi}{180}\right)=\frac{\pi}{4} \text { radians }-223^{\circ}=\quad=\frac{5 \pi}{4}
\end{aligned}
$$

If you want to convert from radians to degrees

$$
\begin{aligned}
& \text { mu(tap) }>\text { by } \frac{180}{\pi} \\
& \frac{5 \pi}{6_{1}}\left(\frac{180}{\pi}\right)=\frac{900}{6}=150^{\circ} \\
& \frac{11 \pi}{12} \mathrm{rad}\left(\frac{150}{\pi}\right)=165^{\circ} \\
& -2.5 \mathrm{rad}\left(\frac{150^{\circ}}{\pi}\right) \approx-143,2^{0} \\
& \text { * Coterminal Angles } \\
& \text { Given } m(L \theta) \\
& \text { coterrinel antes } \\
& m(c \theta)+2 \pi n \\
& n \in\{ \pm 1, \pm 2, \pm 3, \ldots\} \\
& n \in \mathbb{Z} \quad n \neq 0
\end{aligned}
$$

