A linear equation has an infinite number of solutions that form a line in the Cartesian plane.
A system of linear equations is two or more in the near equations
Consider

$$
\begin{array}{r}
3 x+2 y=-8 \\
y=2 x-4
\end{array}
$$

$$
y=2 x-4
$$

$$
y=m x \neq b
$$

$$
(0, b) \text { is } y_{i} \text { int }
$$

$(0,-4)$

$$
3 x+2 y^{2}=-8
$$

slope $m=\frac{2}{1} \rightarrow 2$

$$
-3 x \quad-3 x
$$

$$
\begin{aligned}
& \frac{2 y}{2}=\frac{-3 x-8}{2} \\
& y=0 \frac{3}{2} x-4 \\
& y \text {-int }(0,-4) \\
& m=-\frac{3}{2}
\end{aligned}
$$

* solution: $(0.5-4)$ is the point of intersection

Solving the system algebraically.

$$
\begin{array}{rl}
3 x+2 y=-8 \\
y=2 x-4 & 3 x+2(2 x-4)=-8 \\
3 x+4 x-8 & =-8 \\
\frac{y}{4}+8+8 \\
\frac{7 x}{7}=\frac{0}{7} \\
x=0
\end{array}
$$

Need to solve for y, Let $x=0$
It doesn't matter which equation we use.

$$
\begin{array}{ll}
y=2 x-4 & \text { Solution } \\
y=2(0)-4 & (x, y)=(0,-y) \\
y=0-4 & \\
y=-4 &
\end{array}
$$

$$
\begin{array}{cr}
3 x+2 y=-8 \\
y=2 x-4 & \rightarrow \frac{\text { from earlier }}{y=-\frac{3}{2} x-4}
\end{array}
$$

* If $a=b$ and $b=c$, then $a=c$.
* Transitive Property of equality
\rightarrow Since both expressions equal y

$$
\begin{aligned}
& 2 x+4=-\frac{3}{2} x+4 \\
& +4 \quad+4 \\
& 2 x=+\frac{3}{2} x \\
& +\frac{3}{2} x+\frac{3}{2} x \\
& 2\left(\frac{2}{2}\right) x+\frac{3}{2} x=0 \\
& \frac{4}{2} x+\frac{3}{2} x=0 \\
& \frac{7}{2} x=0 \\
& x=0 \\
& \text { by Zero Product Property }
\end{aligned}
$$

Isolate one variable from one equation.
Substitute quantity found in step one into other equation. Solve the resulting equation.
Substitute resulting value into original equations to find other variable Check.

Consider:

$$
\begin{aligned}
x+y & =16 \\
x-y & =4 \\
\frac{2 x}{2} & =\frac{20}{2} \\
x & =10
\end{aligned}
$$

*Observe:
Two equations in standard form

$$
\begin{aligned}
& A x+B y=C \\
& +y,-y
\end{aligned}
$$

When we add both equations, one variable is eliminated

Solve for, $x=10$

$$
\begin{array}{r}
x+y=16 \\
(x(0)+y=16 \\
-10=-10 \\
\hline y=6
\end{array}
$$

$$
\begin{aligned}
& x-y=4 \\
&(10)-y=4 \\
&-10 \\
& \hline-y=\frac{-6}{-1} \\
& \hline y=6
\end{aligned}
$$

Solution $(x, y)=(10,6)$

$$
\begin{aligned}
& 3 x-2 y=-7 \quad * \text { Observations } \\
& \int \frac{6 x+y=6}{3 x-2 y=-7} \\
& \underline{2(6 x+y)=2(6)} \leqslant \text { multiplied end equation } \\
& 3 x-2 y=-7 \\
& 12 x+2 y=12 \\
& \frac{15 x}{15}=\frac{5}{15}=\frac{(5)(1)}{(5)(3)} \\
& x=\frac{1}{3} \\
& \text { Find } y, x=\frac{1}{3} \\
& \text { Solution } \\
& 6 x+y=6 \quad(x, y)=\left(\frac{1}{3}, 4\right) \\
& \frac{6}{1}\left(\frac{1}{3}\right)+y=6 \\
& \begin{aligned}
2+y & =6 \\
-\frac{2}{2} & -2
\end{aligned} \\
& y=4
\end{aligned}
$$

$$
\begin{aligned}
& 2 x+3 y=7 \quad \text { * Observations } \\
& \frac{x+y=3}{2 x+3 y=7} \rightarrow \text { maltiply by }-2 \\
& \text { y } 2 x+3 y=7 \\
& -2 x-2 y=-6 \\
& y=1 \\
& x+y=3 \\
& (x, y)=(2,1) \\
& x+(1)=3 \\
& x=2
\end{aligned}
$$

(A) $3 x+2 y=4$
(B)

$$
4 x+3 y=7
$$

4(A) $12 x+8 y=16$
$-3(15)-12 x-9 y=-21$

* Observation
* no coefficient, are multiples of other coefficients
\rightarrow must multiply both
* chosen to eliminate x

$$
\begin{aligned}
-y & =-5 \\
y & =5 \\
4 x+3 y & =7 \\
4 x+3(5) & =7 \\
4 x+15 & =7 \\
-15 & -15 \\
\frac{4 x}{4} & =\frac{-8}{4} \\
x & =-2
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{l}
3 x+2 y=4 \\
4 x+3 y=7
\end{array} \quad \rightarrow \begin{aligned}
3 x+2 y & =4 \\
-3 x & -3 x \\
2 y & =4-3 x
\end{aligned} \\
& y=\frac{4-3 x}{2} \\
& 4 x+3 y=7 \\
& y=2-\frac{3}{2} x \\
& 4 x+\sqrt[3]{\left.\sqrt[3]{2}-\frac{3}{\lambda} x\right)}=7 \\
& 4 x+6-\frac{9}{2} x=7 \\
& \left(\frac{2}{2}\right)^{4} x-\frac{9}{2} x+6=7 \\
& \frac{-6-6}{\left(\frac{8}{2}-\frac{9}{2}\right) x=1} \\
& \frac{-\frac{1}{2} x}{\frac{1}{2}}=\frac{1}{-\frac{1}{2}} \\
& x=-2 \\
& (x, y)=(-2,5) \\
& \vdots \\
& y=5
\end{aligned}
$$

