Suppose an investor deposits $\$ 27,000$ into an account for which interest is compounded monthly. Find the amount of money in the account after 6 years using the following interest rates.

1. If $r=3 \%$, then the investment is worth \square after 6 years.
2. If $r=5 \%$, then the investment is worth \square after 6 years.
3. If $r=6.5 \%$, then the investment is worth \square after 6 years.
4. If $r=8 \%$, then the investment is worth \square after 6 years.

$$
\begin{aligned}
& A=P\left(1+\frac{r}{n}\right)^{n t} \\
& A=? \\
& P=\text { principal: } 27000 \\
& r=\text { rate: } 0.03 \\
& n=12 \text { (monthly }) \\
& t=6 \text { years }
\end{aligned}
$$

$$
\text { (1.) } \begin{aligned}
A & =P\left(1+\frac{r}{1}\right)^{n t} \\
A & =(27000)\left(1+\frac{(0.03)}{(12)}\right)^{(122} \\
A & =27000\left(\frac{12}{12}+\frac{0.07}{12}\right)^{72} \\
A & =27000\left(\frac{12.03}{12}\right)^{72} \\
A & \approx \$ 32,317.608 \\
A & \approx \$ 32.317 .61
\end{aligned}
$$

(2) $\$ 36423.48$
(3) $\$ 39836.53$
(4) $\$ 43564.56$

Suppose an investor deposits $\$ 20,000$ into a savings account for 3 years at 8.5% interest. Find the total amount of money in the account if the interest is:

1. Compounded annually, then the investment is worth \square after 3 years.
2. Compounded quarterly, then the investment is worth \square after 3 years.
3. Compounded monthly, then the investment is worth \square after 3 years.
4. Compounded weekly, then the investment is worth \square after 3 years.
5. Compounded daily, then the investment is worth \square after 3 years.
$A=$?

$$
P=\$ 20000
$$

$$
r=8.5 \% \rightarrow 0.085
$$

$n=$ changes with everks question $t=3$

$$
\begin{aligned}
& \text { (1) } n=1 \\
& A=P\left(1+\frac{n}{n}\right)^{n t} \\
& A=20000\left(1+\frac{0.085}{(1)}\right)^{(1)(3)} \\
& A=20000(1.085)^{3} \\
& A=\$ 25,545.78
\end{aligned}
$$

(2) $n=4 \quad A=\$ 25,740.37$
(3) $n=12 \quad A=\$ 25,786.04$
(4) $n=52 \quad A=\$ 25,803.86$
(5) $n=365 \quad A=\$ 25,808.47$

* The more often you compound, the more for your deposit
\rightarrow the more to pay back on loan also.

