Let us consider 2^{x}
Difference between x^{2} - a number squared
$2^{x}-2$ multiplied by itself x times.

$$
\begin{array}{c|c|c|c|c|c|c|c|c|c}
x & -3 & -2 & -1 & 0 & 1 & 2 & 3 & 4 & 5 \\
\hline 2^{x} & \frac{1}{8} & \frac{1}{4} & \frac{1}{2} & 1 & 2 & 4 & 8 & 16 & 32 \\
* 2 & * 2 & * 2 & * 2 & * 2 & * 2 & * 2 & * 2 \\
\text { Recall } 2^{-1}=\frac{1}{2^{1}}=\frac{1}{2} \\
2^{-2}=\frac{1}{2^{2}}=\frac{1}{4}
\end{array}
$$

Let us plot these pints and consider the graph.

$y=2^{x}$ is an example of an exponential function
Let $\cdot b \in \mathbb{R}^{+} \backslash\{1\}$
positive real number, except I
Then for amy $x \in \mathbb{R}$ (real number x),
$y=b^{x}$ is an exponential function.
Compare the graphs of $y=2^{x}$ and $y=x^{2}$

Compare the functions $y=2^{x}, y=3^{x}, y=5^{x}$

$$
\begin{aligned}
& y=3^{x} \\
& \begin{array}{l|l|l|l|l|l|l|l|l|l}
x & -3 & -2 & -1 & 0 & 1 & 2 & 3 & 4 & 5 \\
\hline 3^{x} & \frac{1}{27} & \frac{1}{9} & \frac{1}{3} & 1 & 3 & 9 & 27 & 81 & 243
\end{array}
\end{aligned}
$$

$$
y=5^{x}
$$

x	-3	-2	-1	0	1	2	3	4	5
5^{x}	$\frac{1}{125}$	$\frac{1}{25}$	$\frac{1}{5}$	1	5	25	125	625	

Given $y=b^{x}$, if b is larger, it grows faster.

Consider $y=\left(\frac{1}{2}\right)^{x}$

$$
\begin{aligned}
& y=\left(\frac{1}{2}\right)^{x} \\
& \begin{array}{c|c|c|c|c|c|c|c|c|c}
\frac{x}{2} & -3 & -2 & -1 & 0 & 1 & 2 & 3 & 4 & 5 \\
\hline y & 4 & 2 & 1 & \frac{1}{2} & \frac{1}{4} & \frac{1}{8} & \frac{1}{16} & \frac{1}{32} \\
y=\left(\frac{1}{3}\right)^{x} \\
\frac{x}{4} & -3 & -2 & -1 & 0 & 1 & 2 & 3 & 4 & 5 \\
\left(\frac{1}{3}\right)^{x} & 27 & 9 & 3 & 1 & \frac{1}{3} & \frac{1}{9} & \frac{1}{27} & \frac{1}{81} & \frac{1}{243}
\end{array}
\end{aligned}
$$

$\uparrow \uparrow$ exponential decay

$$
\text { if } 0<b<1, y=b^{x} \text { is }
$$ a decay function

if b is closer to 0 , then decay is faster.

Combined Observations $\quad y=b^{x}$
I. $(0,1)$ is the y-int, since $b^{0}=1$
2. b^{x} is always greater than 0 .
3. $y=b^{x}$ will never intersect with $y=0$
$\rightarrow y=0$ is a horizontal asymptote
4. if $b>1$, exponential growth
if $0<b<1$, exponential decay
General form for exponential grouth/decay.

$$
\begin{array}{ll}
y=a b^{x} & y=\text { final value } \\
(0, a) \text { is yoint } & a=\text { initial value } \\
& b=\text { growth / du ny factor } \\
& x=\text { time }
\end{array}
$$

Yin will also see these two equations.

$$
\begin{array}{ll}
A=P(1+r)^{t} & A=\text { final Value } \\
A=P(1-r)^{t} & P=\text { initial Value } \\
& r=\text { rate (indecima) }
\end{array}
$$

if t, growth. if - decay $t=$ time
a. Find a mathematical model that relates the population of the Bahamas as a
function of the number of years since 2008.
b. If the annual rate of increase remains the same, use this model to predict the

$$
\begin{aligned}
P & =321,000 \\
r & =1,390.10 \\
& =0.0139 \\
A & =?
\end{aligned}
$$

a.)

$$
\begin{aligned}
& A=P(1 \pm r)^{t} \\
& \text { increase } 1 \text { use }^{t} \\
& A=P(1+r)^{t} \\
& A=321.000(1+(0.0134))^{t}
\end{aligned}
$$

$t=$ years since 2008

$$
\text { b.) } \begin{aligned}
& t=2016-2008=8 \text { yours } \\
& A=321,000(1+0.0139)^{8} \\
& A=321,000(1.0139)^{8} \\
& \approx 321,000(1.116762917) \\
& \approx 358,480.9 \\
& \approx 358,481 \text { people } \\
& \approx 358,000 \text { people }
\end{aligned}
$$

Skill Practice The population of Colorado in 2000 was approximately $3,700,000$ with an annual increase of 2%.
8. Find a mathematical model that relates the population of Colorado as a function of the number of years since 2000.
9. Use this model to predict the population of Colorado in 2016. Round to the nearest thousand.

$$
\begin{aligned}
& A=? \\
& P=3,700,000 \\
& r=2 \% \rightarrow 0.02 \\
& t=\text { years since } 2000
\end{aligned}
$$

$$
A=P(1+r)^{t}
$$

growth
a)

$$
\begin{aligned}
A & =3,700,000(1+.02)^{t} \\
& =3,700,000(1,02)^{t}
\end{aligned}
$$

b.)

$$
\begin{aligned}
& t=2016-2000=16 \\
& A=3,700,000(1,02)^{16} \\
& A \approx 5,079,307 \text { people } \\
& A \approx 5,079,000 \text { people }
\end{aligned}
$$

