$\sqrt{25}$ is 5or-5, bloc $5^{2}=25$

$$
(-5)^{2}=25
$$

$\sqrt{49}$ is 7 or -7
$\sqrt{0}=0 \quad$ only one $\sqrt{0}$ because 0 is neither positive or negative
$\sqrt{-9} \longrightarrow n o \sqrt{-9}$ bole canst take square root of a negative number
$* \sqrt{a}$, if $a>0$, then there are two square roots
$a=0$, only 0 issquere root $a<0$, no real square root
$\sqrt{a} *$ positive square root (principul root)
$-\sqrt{a} *$ nesctive squere coot

$$
\begin{array}{lr}
\sqrt{36}=6 \quad \text { b/c }(6)^{2}=36 \\
\sqrt{\frac{4}{9}}=\frac{2}{3} & \left(\frac{2}{3}\right)^{2}=\frac{4}{9} \quad \frac{\sqrt{4}}{\sqrt{9}}=\frac{2}{3} \\
\sqrt{.04}=\sqrt{\frac{4}{100}}=\frac{2}{10}=\frac{1}{5}=.2 \quad \begin{array}{l}
\text { anoterent propecty }
\end{array} & \text { for ucdicels }
\end{array}
$$

Definition of $n^{\text {-th }}$ root -
b is an n-th root of a if $b^{n}=a$
e.j. 2 is a square root of $4 . \quad 2^{2}=4$

2 is a cube root of $8 \quad 2^{3}=8$
2 is a fourth soot of $16 \quad 2^{4}-16$
$\sqrt[n]{a}$
$n-$ index $\rightarrow n \in\{2,3,4,5, \ldots\}$
a - radicand
es $\uparrow \sqrt[0]{4}=2 \quad \sqrt[3]{8}=2 \quad \sqrt[4]{16}=2$
no index,
arsine square root always

$$
\begin{aligned}
& \sqrt[3]{27}=3 \\
& \sqrt[3]{-27}=-3
\end{aligned}
$$

$$
\text { b/c } 3^{3}=27
$$

$$
\text { ale }(-3)^{7}=27
$$

$$
\begin{aligned}
& \sqrt[4]{16}=2 \\
& \sqrt[4]{-16}=\text { not rect } \\
& \sqrt[5]{32}=2 \\
& \sqrt[5]{-32}=-2
\end{aligned}
$$

$$
\sqrt[6]{64}=2
$$

$$
\sqrt[6]{-64}=\text { not real }
$$

* if index is even, radicand cannot be negative
* if inlay is oddi radicand
can be negative
- if index is even, then $\sqrt[n]{a}$ is always the prinipa) n-th root of a
- if index is odd, then $\sqrt[n]{a}$ is the n-throot of a_{1}

$$
=\sqrt[n]{0}=0
$$

Evclucte $\sqrt[n]{a^{n}}$ if n is odd, $\sqrt[n]{a^{n}}=a$, no negetresesign n is even, $\sqrt[n]{a^{n}}=|a|$

$$
\sqrt[4]{(-3)^{4}}=|-3|=3
$$

even indey

$$
\sqrt[3]{(-3)^{\sqrt{5}}}=-3
$$

note

$$
\begin{aligned}
& \text { note } \\
& x+2 \neq|x+2|
\end{aligned}
$$

(2) $\sqrt{(x+2)^{2}}=|x+2|$

$$
\sqrt[3]{(a+b)^{3}}=a+b
$$

$\sqrt[(2)]{y^{4}}=\sqrt[2]{\left(y^{2}\right)^{2}}=\left|y^{2}\right|=y^{2}$

$$
y^{4}=\left(y^{2}\right)^{2}
$$

evin indes $b / c y^{2}$ an nevor be negative y evennumber can not be negetive

$$
\sqrt{y^{8}}=\sqrt[2]{\left(y^{4}\right)^{2}}=\left|y^{4}\right|=y^{4}
$$

$$
\sqrt{y^{6}}=\sqrt[2]{\left(y^{3}\right)^{2}}=\left|y^{3}\right| \neq y^{3}
$$

Nkeep the absolute value a. evers jindex
b. y^{3} can be negofrue
*MrH:plication Property of Radicals

$$
\sqrt[n]{a b}=\sqrt[n]{a} \cdot \sqrt[n]{b}
$$

en

$$
\begin{aligned}
\sqrt{36} & =\sqrt{9 \cdot 4} \\
& =\sqrt{9} \cdot \sqrt{4} \\
& =3 \cdot 2=6 \\
\sqrt{36} & =\sqrt{6 \cdot 6} \\
& =\sqrt{6} \cdot \sqrt{6} \\
& =(\sqrt[3]{6})^{2}=6
\end{aligned}
$$

Simplified form of $<r<A: \ll l$

1. Radicand has n. factor raised to a power greater then or equal to the index.
2. Radicand does n't contain a fraction
3. No radicals in denominator of a fraction

$$
\begin{array}{rlr}
\sqrt{x^{2}}=|x|<x^{3} \mid \\
\sqrt{x^{4}}=x^{2} & \sqrt{x^{8}}=x^{4}
\end{array}
$$

$$
\begin{aligned}
& \sqrt{x^{2}}=x \\
& \sqrt{x^{6}}=x^{3}
\end{aligned}
$$

ontywhen assuming $x>0$ x is positive

What about odd power radicands?
$\sqrt{x^{9}}=\sqrt[2]{x^{8}} \sqrt[2]{x^{1}}$. factor's power is lear than index
-factor's power is largest power

$$
=x^{4} \sqrt{x}
$$ divisible by index

$$
\begin{aligned}
& \sqrt{a^{11}}=\sqrt[2]{a^{10}} \sqrt{a} \quad \sqrt{a^{\prime \prime}}=\sqrt{a^{10}} \sqrt{a} \quad \text { assume } a>0 \\
& =\left|a^{5}\right| \sqrt{a} \mid=a^{5} \sqrt{a} \\
& \left|a^{5}\right| \neq a^{5} \\
& \sqrt[4]{r^{27}}=\sqrt[4]{r^{24}} \cdot \sqrt[4]{r^{3}} \\
& \begin{aligned}
* r^{24} \cdot r^{2} & =r^{24+2} \\
& =r^{4}
\end{aligned} \\
& =\sqrt[4]{\left(r^{6}\right)^{4}} \cdot \sqrt[4]{r^{3}} \\
& =r^{6} \sqrt[4]{r^{3}}
\end{aligned}
$$

*Assume ell variables are positive

$$
\begin{aligned}
\sqrt[(2)]{\omega^{7} \cdot z^{9}} & =\sqrt{\omega^{7}} \cdot \sqrt{z^{9}} \\
& =\sqrt{w^{6}} \sqrt{\omega^{1}} \sqrt{z^{8}} \sqrt{z^{\prime}} \\
& =\sqrt{\omega^{6}} \sqrt{z^{8}} \sqrt[2]{v^{1} \sqrt{z^{1}}} \\
& =\omega^{3} \cdot z^{4} \sqrt{\omega z} \\
\sqrt{40 x^{17} y^{10}} & =\sqrt{2^{3} \cdot 5 x^{17} y^{10}} \\
& =\sqrt[2]{2^{2} x^{16} y^{10} \sqrt[2]{2^{1} \cdot 5^{1} x^{1}}} \\
& =\sqrt[2]{2^{2}\left(x^{8}\right)^{2}\left(y^{5}\right)^{2} \sqrt{2 \cdot 5 x}} \\
& =2 x^{8} y^{5} \sqrt{10 x}
\end{aligned}
$$

$$
\begin{aligned}
& \sqrt{\frac{a^{7}}{a^{3}}}
\end{aligned}=\sqrt{a^{4}}=a^{2} .
$$

* Ccos we multiply 7 by $\sqrt{2}$?
$7 \sqrt{2}=\sqrt{14} ?$
No
bechuse different povers forts

Rational Exponerts

$$
\begin{aligned}
& a^{\frac{1}{n}}=\sqrt[n]{a} \\
& \text { es } 4^{\frac{1}{2}}=\sqrt{4} \\
& 6^{\frac{1}{3}}=\sqrt[3]{6} \\
& a^{\frac{m}{n}}=\sqrt[n]{a^{m}}=(\sqrt[n]{a})^{m} \\
& \text { c. } \quad 4^{\frac{3}{2}}=\sqrt{4^{3}}=(\sqrt{4})^{3} \\
& =\sqrt{64}=2^{3} \\
& =8 \quad=8 \\
& 81^{\frac{3}{4}}=\sqrt[4]{81^{3}}=(\sqrt[4]{81})^{3} \\
& =\sqrt[4]{\left(3^{4}\right)^{3}}=\left(\sqrt[4]{3^{4}}\right)^{3} \\
& =\sqrt[4]{\left(3^{3}\right)^{4}}=3^{3} \\
& =3^{3}=27=27
\end{aligned}
$$

