Rational Equations

- equations that contain one or more rational expressions

$$
\begin{aligned}
& \underbrace{\frac{1}{2} \frac{x}{1}+\frac{1}{3}}_{\text {LCD: } 6}=\frac{1}{4} x \\
& \frac{6}{6}\left(\frac{x}{2}\right)+\frac{6}{6}\left(\frac{1}{3}\right)=\frac{x}{4} \\
& \frac{3 x}{6}+\frac{2}{6}=\frac{x}{4} \\
& \frac{3 x+2}{6}=\frac{x}{4} \\
& 4(3 x+2)=6 x \\
& 12 x+8=6 x \\
& -8 \quad-8 \\
& 12 x=6 x-8 \\
& \frac{-6 x}{-6 x}=\frac{-6 x}{6} \\
& x=-\frac{4}{3} \\
& \text { * Need } 1 \text { common } \\
& \text { denominator. } \\
& \text { Check } x=-\frac{4}{3} \\
& \overline{\frac{1}{2} x}+\frac{1}{3}=\frac{1}{4} x \\
& \frac{1}{2}\left(-\frac{4}{3}\right)+\frac{1}{3}=\frac{1}{4}\left(-\frac{4}{3}\right) \\
& -\frac{2}{3}+\frac{1}{3}=-\frac{1}{3} \\
& -\frac{1}{3} z-\frac{1}{3} \\
& x=-\frac{4}{3} \text { is a solution }
\end{aligned}
$$

$$
\begin{aligned}
& \underbrace{\frac{1}{2}+\frac{1}{3}}_{1 C D=12}=\frac{1}{4} x \\
& \frac{12}{12}\left(\frac{x}{2}\right)+\frac{12}{12}\left(\frac{1}{3}\right)=\frac{12}{12}\left(\frac{x}{4}\right) \longleftarrow \\
& \frac{6 x+\frac{4}{12}}{12}=\frac{3 x}{12} \\
& \frac{6 x+4}{12}=\frac{3 x}{12} \\
& \frac{3 x+4}{}=3 x \\
& \frac{3 x}{3 x+4}=0 \\
& 3 x=-4 \\
& x=-\frac{4}{3}
\end{aligned} \rightarrow \text { chedc }
$$

$$
\begin{aligned}
& \frac{1}{2} \frac{x}{1}+\frac{1}{3}=\frac{1}{4} x \\
& 12\left(\frac{x}{2}\right)+12\left(\frac{1}{3}\right)=12\left(\frac{x}{4}\right) \\
& 6 x+4=3 x
\end{aligned}
$$

$x=-\frac{4}{3} \longrightarrow$ check... we did ctrecty

* Rational Equations: Find LCD of all fractures

2. Multiply all terms by LCD
3. Solve

リ, Check

$$
\begin{aligned}
& \frac{3}{5}+\frac{1}{x}=\frac{2}{3} \\
& \text { LCD: } 15 x \\
& 15 \times \frac{3}{5}+15 \times \frac{1}{x}=15 \times \frac{2}{3} \\
& 9 x+15=10 x \\
& \text { Check } x=15 \\
& \frac{3}{5}+\frac{1}{x}=\frac{2}{3} \\
& \frac{-9 x}{15}=x \\
& \therefore x=15 \text { is the solution } \\
& \text { Check } x=15 \\
& \frac{3}{5}+\frac{1}{15}=\frac{2}{3} \\
& \frac{15}{15} \cdot \frac{3}{3}+\frac{15}{15} \cdot \frac{1}{15}=\frac{13^{5}}{15} \cdot \frac{2}{3} \\
& \frac{9+1}{15}=\frac{10}{15} \\
& \frac{10}{15}=\frac{.10}{15} v
\end{aligned}
$$

$$
\begin{aligned}
& 3-\frac{6 w}{w+1}=\frac{6}{w+1} \\
& \text { LCD: } \omega+1 \\
& 3(w+1)-\frac{6 w}{w+1}(w+1)=\frac{6}{w+1}(w+1) \\
& 3 w+3-6 w=6 \\
& -3 w+3=6 \\
& \text { Check } v=-1 \\
& 3-\frac{6(-1)}{(-1)+1}=\frac{6}{(-1)+1} \\
& -3-3 \\
& 3-\frac{-6}{0}=\frac{6}{0} \\
& \frac{-3 w}{-3}=\frac{3}{-3} \\
& \omega=-1 \\
& \rightarrow \omega=-1 \text { not a solution } \\
& \therefore \text { No solutions } \\
& 3-\frac{6_{w}}{\omega+1}=\frac{6}{\omega+1} \begin{array}{r}
\omega+1 \neq 0 \\
-1-1 \\
\omega \neq-1
\end{array} \\
& i^{\omega}=-1 \text { is absolution } \mid \rightarrow \text { if } \omega=-1 \text { is calculated } \\
& \text { extras toul } \\
& \text { We can calanlate if. } \\
& \text { to be a solution, } \\
& \text { It doesn't really work } \\
& \text { reject } \omega=-1
\end{aligned}
$$

$$
\begin{aligned}
& \frac{36}{p^{2}-9}=\frac{2 p}{p+3}-1 \\
& L C D:(p+3)(p-3) \\
& (p+3)(p-3) \neq 0 \\
& \frac{36}{(p+3)(p-3)}=\frac{2 p}{p+3}-1 \\
& p+3 \neq 0 \quad p-3 \neq 0 \\
& p \neq-3 \quad p \neq 3 \\
& \rightarrow \text { if } p=-3 \text { or } 3 \text {, } \\
& (p+5)(p-3) \frac{36}{(p+3)(p-3)}=(p+5)(p-3) \frac{2 p}{p+3}-1(p+3)(p-3) \\
& 36=2 p(p-3)-(p+3)(p-3) \\
& 36=2 p^{2}-6 p-\left(p^{2}-9\right) \\
& 36=2 p^{2}-6 p-p^{2}+9 \\
& 36=p^{2}-6 p+9 \\
& -36 \quad-36 \quad * a=1 \\
& 0=p^{2}-6 p-27 \\
& -27=\frac{-4}{-9} \cdot \frac{3}{3} \\
& -6=-9+3 \\
& O=(p-9)(p+3) \\
& \therefore p=9 \text { is solution } \\
& p-q=0 \text { pr } p+3=0 \\
& p=9 \text { or } p=-3 \text { rejected }
\end{aligned}
$$

$$
\begin{array}{lr}
1+\frac{3}{x}=\frac{28}{x^{2}} & \text { LCD: } \begin{array}{l}
* L C D \neq 0 \\
x^{2} \\
x^{2} \neq 0
\end{array} \\
x^{2}+3 x=\frac{3}{x}=x^{2} \cdot \frac{28}{x^{2}} \\
x^{2}+3 x-28=0 \\
(x+7)(x-4)=0 \\
x+7=0 \quad \text { or } \quad x-4=0 \\
-7-7 & +4+4 \\
x=-7 & x=4 \\
-7 \neq 0 & 4 \neq 0
\end{array}
$$

$L \therefore \therefore x=-7$ and $x=4$ are both solutions.

$$
x \in\{-7,4\}
$$

