Name:
Points: \qquad
Given two points $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$, the formula for finding the slope is $\frac{m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}}{\left(x_{2}, y_{2}\right)}=\frac{\Delta y}{\Delta x}$ Slope-Intercept Form of the Equation of a Line: The equation of any line with slope m and y-intercept b is given by $y=m x+b$. $\quad y$-intercept $(0, b)$
Point-Slope Form of the Equation of a Line: The equation of the line through $\left(x_{1}, y_{1}\right)$ with slope m is given by $y=i n\left(x-x_{1}\right)+y_{1}$

1. Graph by the $y=m x+b$ method
a. Graph $y=-2 x+6 \neq(0, b)$ if a
$m=-\frac{2}{1}$
$\downarrow 2$
$\rightarrow 1$

b. Solve the equation for y and graph: $2 x-3 y=9$

$m=\frac{2}{3}$
$x \uparrow 2$
$\rightarrow 3$
2. Special Lines: The graph of $y=a$ is a horizontal line through $(0, a)$ The graph of $x=a$ is a vertical line through ($a, 0$)
a. Graph $y=5=$ set af all point

3. Find the equation of the line with slope $-\frac{2}{3}$ and y-intercept (0,4). $\quad y=-\frac{2}{3} \times+4$
4. Give the slope and y-intercept for the line $\begin{aligned} & x-2 y=1 . \\ & y=m x+b \quad x-2 y=1\end{aligned} \quad x-x+1=1-x \quad \frac{-2 y=\frac{-x+1}{-2}}{-2} \quad y=\frac{1}{2} \quad-\frac{1}{2}$

5. Find the equation of the line that passes through the points $(-4,5)$ and $(-7,4)$.
6. a. Write an equation of a line passing through
the point $(-2,1)$ and perpendicular to $y=\frac{2}{3} x-10$

$$
\begin{aligned}
m_{1}=-\frac{3}{2} \quad y & =m\left(x-x_{1}\right)+y_{1} \\
y & =-\frac{3}{2}(x-(-2))+(1) \\
y & =-\frac{3}{2}\left(x+2_{1}\right)+1 \\
y & =-\frac{3}{2} x-3+1 \\
y & =-\frac{3}{2} x-2
\end{aligned}
$$

7. Write an equation of a line passing through the point $(-12,3)$ and
a. parallel to $4 x-3 y=7$
b. perpendicular to $4 x-3 y=7$
y-intercept - the point.

$$
\text { Slope }=\frac{r_{i 1}}{\operatorname{run}_{n}} \uparrow
$$

where the graph passes through the y-axis
$-(0, b)$

- b is the y-value when $x=0$
point slope form of a line

$$
m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}} \ldots \quad m=\frac{y-y_{1}}{x-x_{1}}
$$

$$
(x, y) \text { is any point on a line }
$$

$$
\left(x_{1}, y_{1}\right) \text { is a specific point on }
$$

$$
\begin{aligned}
& (x, y, y) \pi \\
& (x, y) \leftarrow(x, y)
\end{aligned}
$$

a line

* We generally prefer to write line ar equations

$$
a a d y=m x+b
$$

$$
\begin{aligned}
& m=\frac{y-y_{1}}{x-x_{1}} \quad \text { solve for } y \\
& m\left(x-x_{1}\right)=\frac{y-y_{1}}{x-x_{1}}\left(x-x_{1}\right) \\
& \text { *multiply } \\
& \text { corsunifiply } \\
& m\left(x-x_{1}\right)=y-y_{1} \\
& y-y_{1}=m\left(x-x_{1}\right) \rightarrow \text { point slope form } \\
& \text { of a line } \\
& (x, y) \text { is an } \\
& \text { arbitrary point. } \\
& \left(x_{1}, x_{1}\right) \text { is a given } \\
& \text { point } \\
& M=\text { slope } \\
& y-y_{1}=m\left(x-x_{1}\right) \\
& \frac{+y_{1}+y_{1}}{y=m\left(x-x_{1}\right)+y_{1}}
\end{aligned}
$$

Standard form of a line

$$
A x+D y=C
$$

(x, y) is any point on the line.

$$
\begin{aligned}
& 2 x-3 y=9 \quad \text { Put into } y=m x+b \text { form } \\
& -2 x \quad-2 x \quad \text { and graph. } \\
& *-3 y=-2 x+9 * \text { get y by itself } \\
& \frac{-3 y}{-3}=\frac{-2 x+9}{-3} \quad *-3 y \text { means } \\
& y=\frac{-2 x+9}{-3} \\
& -3 \text { times y } \\
& y=\frac{-2}{-3} x+\frac{9}{-3} \\
& y=\frac{2}{3} x-3 \longrightarrow(0,-3)^{x^{y}}
\end{aligned}
$$

$$
\begin{aligned}
& y=\frac{1}{3}(x-(-7))+(4) \\
& \left.y=\frac{1}{3} x+7\right)+4 \\
& y=\frac{1}{3} x+\frac{7}{3}+\frac{4}{1}\left(\frac{3}{3}\right) \\
& y=\frac{1}{3} x+\frac{7}{3}+\frac{12}{3} \\
& y=\frac{1}{3} x+\frac{19}{3}
\end{aligned}
$$

$\frac{\text { Graphing in point-slope }}{y} \quad y=m\left(x-x_{1}\right)+y_{1}, \begin{aligned} & \left(x_{1}, y_{1}\right) \\ & \text { is point }\end{aligned}$

$$
\begin{aligned}
& y=\frac{2}{3}(x-4)+3 \\
& \text { point: }(4,3) \\
& \text { slope } \frac{2}{3} \operatorname{pr}_{\rightarrow 3}
\end{aligned}
$$

1. Plot the point in the equation
2. Use slope to find second point

3 , Draw line between 2 prints

$$
y=-\frac{1}{3}(x+2)-1 \quad x=\operatorname{m}\left(x-x_{1}\right)+y
$$

point: $(-2,-1)$
slope: $-\frac{1}{3} \downarrow 1$

* Parallel lines have same slope.
* if one line has slope $\frac{y}{x}$ a a perpendicular line has a slope $-\frac{x}{y}$

