NEW YORK CITY COLLEGE OF TECHNOLOGY

The City University of New York

DEPARTMENT:	Mathematics
COURSE:	MAT 1275CO
TITLE:	College Algebra and Trigonometry
DESCRIPTION:	An intermediate and advanced algebra course Topics include quadratic equations, systems or linear equations, exponential and logarithmic functions; topics from trigonometry, including identities, equations and solutions of triangles.
TEXTS:	1) Intermediate Algebra 2e, by Lynn Marecek and Andrea Honeycutt Mathis, et al. OpenStax: https://openstax.org/details/books/intermediate-algebra-2e
	2) Algebra and Trigonometry by Jay Abramson, et al. OpenStax: https://openstax.org/details/books/algebra-and-trigonometry
CREDITS:	4
PREREQUISITES:	CUNY proficiency in math OR credit for MAT1190/MAT1190CO
	Updated Spring 2021 by H. Carley, B. Kan, A. Masuda, and T. Tradler

A. Testing/Assessment Guidelines:

The following exams should be scheduled:

- 1. A one-hour exam at the end of the First Quarter.
- 2. A one session exam at the end of the Second Quarter.
- 3. A one-hour exam at the end of the Third Quarter.
- 4. A one session Final Examination.
- B. A scientific calculator is required.

COURSE INTENDED LEARNING OUTCOMES

Course Learning Outcomes	General education Learning Outcomes	Required Core: Mathematical and
2 11	50.7	Quantitative Reasoning
Be able to simplify and	FS: Transfer; Be able to refer to prior	Be able to use algebraic,
manipulate linear, quadratic,	knowledge or skill and can apply such to	numerical, graphical, or
radical, rational, exponential,	new situations.	statistical methods to
logarithmic, and trigonometric		draw accurate conclusions and
expressions.		solve mathematical problems.
Be able to solve equations	Foundation and skills: Curiosity: Explore a	Interpret and
involving linear, quadratic,	topic in depth yielding insight indicating	draw appropriate inferences from
radical, rational, exponential,	interest.; QL: Interpretation, presentation:	quantitative representations, such as
logarithmic, or trigonometric	Be able to explain information presented	formulas, graphs, or tables.
expressions as well as systems of	in mathematical forms and to convert	
linear/quadratic equations.	relevant information into various	
	mathematical forms.	
Be able to graphically solve	FS: Transfer; Be able to refer to prior	Be able to use algebraic,
equations involving linear and	knowledge or skill and can apply such to	numerical, graphical, or
quadratic expressions (including	new situations. QL: Calculation,	statistical methods to
systems of such). Be able to use	Application/Analysis: Be able to carry out	draw accurate conclusions and
the unit circle to solve	accurate calculations in order to solve a	solve mathematical problems.
trigonometric equations.	problem and to make judgements and	·
Understand the relationships	draw appropriate conclusions based on	
between solutions to equations	the quantitative analysis of data, while	
and their graphs.	recognizing the limits of this analysis.	
Be able to frame word problems	FS: Independence, reflection: Pursue	Be able to represent
in terms of mathematical	knowledge beyond classroom	quantitative problems expressed in
equations and/or graphs. Be able	requirements and/or show interest in	natural language in a suitable mathe
to interpret the mathematical	independent educational experiences and	matical format and
solutions in terms of the original	reviews prior learning leading to	apply mathematical methods to
language of the problem.	clarification and broader perspectives.	problems in other fields of study.
Be able to write solutions of	QL: Communication: Be able to express	Be able to
mathematical problems involving	quantitative evidence in support of the	effectively communicate quantitative
linear, quadratic, radical, rational,	argument or purpose of the work.	analysis or solutions to
or trigonometric expressions with		mathematical problems in written
full detailed explanations.		or oral form.
Be able to recognize errors in	FS: Initiative: Complete required work and	Be able to evaluate solutions to
proposed solutions and explain in	identifies and pursues additional	problems for reasonableness using a
written or oral form the nature of	expansion or knowledge or skills. QL:	variety of means, including
such an error as well as be able	Assumption. Be able to make and evaluate	informed estimation.
to correct it. Be able to estimate	important assumptions in estimation and	
solutions of equations using	modeling.	
graphs.		
grapiis.		

MAT 1275CO - College Algebra and Trigonometry Course Outline

Textbooks: 1) Intermediate Algebra 2e by Lynn Marecek and Andrea Honeycutt Mathis, et al. OpenStax (Classes 1-25)

2) Algebra and Trigonometry by Jay Abramson, et al. OpenStax (Classes 26-37)

WeBWorK: WeBWorK for MAT1275 uses the OpenLab Q&A site: Students will need an OpenLab account in order to post new questions.

Class	Lesson	Section	WeBWorK Set
1	Graph Linear Equations in Two Variables	3.1: all examples	LinesReview
	Slope of a Line	3.2: all examples	GraphingLines
	Find the Equation of a Line	3.3: all examples	LineLab
2	Solve Systems of Linear Equations with Two	4.1: exclude Ex. 4.6	LinearSystems
	Variables		
3	Solve Systems of Equations with Three Vari-	4.4: all examples	3×3 -Systems
	ables		
	Solve Systems of Equations Using Determi-	<u>4.6</u> : exclude Ex. 4.52	
	nants (optional)		
4	Properties of Exponents and Scientific Notation	<u>5.2</u> : exclude Scientific Notation	IntegerExponents
5	Greatest Common Factor and Factor by Group-	$\underline{6.1}$: all examples	GCF-Grouping
	ing		
6	Factor Trinomials	<u>6.2</u> : exclude Ex. 6.14-6.18, 6.21, 6.22	AC-Method
	Factor Special Products	<u>6.3</u> : exclude Ex. 6.23-6.26, 6.31-6.34	DifferenceOfSquares
7	Polynomial Equations	<u>6.5</u> : exclude Ex. 6.50, 6.51, 6.55	ZeroProductProperty
8	Add and Subtract Rational Expressions	<u>7.2</u> : exclude Ex. 7.22, 7.23	ReducingRationalExpressions
			AddRationalExpressions
			AddRationalExpressions2
	Simplify Complex Rational Expressions	7.3: all examples	ComplexFractions-Method1
			ComplexFractions-Method2
9	Solve Rational Equations	7.4: exclude Ex. 7.40	FractionalEquations
	Applications with Rational Equations	<u>7.5</u> : Ex. 7.45, 7.46	
10	Simplify Expressions with Roots	<u>8.1</u> : Ex. 8.1, 8.2, 8.7a, 8.8, 8.10, 8.12	HigherRoots
			HigherRoots-Algebraic
	Simplify Rational Exponents	<u>8.3</u> : Ex. 8.26, 8.27a, 8.28, 8.29-8.33 all	RationalExponents
11	Simplify Radical Expressions	8.2: Ex. 8.13, 8.14a, 8.15a, 8.16a,	SimplifyingRadicals
		8.17a, 8.20a, 8.21a, 8.22a, 8.23a, 8.24a,	
		8.25a	
	Add, Subtract, and Multiply Radical Expres-	<u>8.4</u> : Ex. 8.36a, 8.37a, 8.38a, 8.39a	AddSubtractRadicals
	sions		
12	Multiply Radical Expressions	8.42: Ex. 8.40a, 8.41a, 8.42a, 8.43a,	MultiplyRadicals
		8.44, 8.45a, 8.46	
13	Divide Radical Expressions	8.5: Ex. 8.47a, 8.48a, 8.49, 8.50, 8.53,	RationalizeDenominators
		8.54, 8.55	
14	Solve Radical Equations	<u>8.6</u> : Ex. 8.56, 8.57, 8.58, 8.61, 8.62	RadicalEquations

Class	Lesson	Section	WeBWorK Set
15	Use the Complex Number System	<u>8.8</u> : Ex. 8.76-8.89 all	ComplexNumbers
16	Solve Quadratic Equations Using the Square	9.1: all examples	SquareRootProperty
	Root Property		
	Solve Quadratic Equations by Completing the	9.2: all examples	
	Square		
17	Solve Quadratic Equations Using the Quadratic	9.3: derive the quadratic formula, ex-	QuadraticFormula
	Formula	clude Ex. 9.26	
18	Solve Applications of Quadratic Equations	<u>9.5</u> : exclude Ex. 9.40, 9.41	
19	Graph Quadratic Functions Using	9.6: all examples	ShiftingParabolas
	Properties	odd	ParabolaLab
	Graph Quadratic Functions Using	9.7: exclude Ex. 9.63	ParabolaVertices-CtS
	Transformations		Parabola Vertices-
			VertexFormula
	Parabolas (optional)	<u>11.2</u> : Ex. 11.15	
20	Distance and Midpoint Formulas; Circles	11.1: all examples	DistanceFormula
	Perpendicular Bisectors	Supplemental notes on Perpendicular	CircleLab
		Bisectors	Circles
21	Solve Systems of Nonlinear Equations	11.5: all examples	NonLinearSystems
22	Evaluate and Graph Exponential Functions	<u>10.2</u> : exclude Ex. 10.10-10.13	ExponentialFunctions
23	Evaluate and Graph Logarithmic Functions	10.3: exclude Ex. 10.22, 10.23, 10.26, 10.27	LogarithmicFunctions
24	Use the Properties of Logarithms	10.4: all examples	LogarithmicProperties
25	Solve Exponential and Logarithmic Equations	10.5: all examples	ExponentialEquations
			Exponential Equations-Calc
			CompoundInterest
26	Angles	7.1: Ex. 1-8 all	AngleMeasure-Radians
27	Right Triangle Trigonometry	7.2: all examples	SolvingRightTriangles
			SpecialTriangles
			TrigonometryRatios
28-	Unit Circle	7.3: all examples	UnitCircle
29			
30	The Other Trigonometric Functions	7.4: exclude Ex. 4	CoordinatePlaneTrig
31	Graphs of the Sine and Cosine Functions	8.1: Ex. 1, 2, 8	GraphingSineCosine
	Graphs of the Other Trigonometric Functions	<u>8.2</u> : Ex. 1, 3	
00	(optional)	0.0 F 1.4	G 1 : D: 1/T: 1
32	Inverse Trigonometric Functions	<u>8.3</u> : Ex. 1-4	SolvingRightTriangles-
22	Calaina Thianna and Ania E	0.1111	InverseTrig
33	Solving Trigonometric Equations with Identities	9.1: all examples	TricEquations
34- 35	Solving Trigonometric Equations	9.5: Ex. 1-5, 7-13, 17	TrigEquations
36	Non-right Triangles: Law of Sines	10.1: all examples	LawOfSines
37	Non-right Triangles: Law of Sines Non-right Triangles: Law of Cosines	10.1: an examples 10.2: Ex. 1-4	LawOfCosines
31	Final Exam Review	10.2. Ex. 1-4	LawOTOISHIES
	rmai Exam Review		