$$
\begin{aligned}
y=m x+b \quad y= & y \text {-coordinate }- \text { dependent variable } \\
m= & \text { slope }=\frac{y_{2}-y_{1}}{x_{2}-x_{1}} \\
& \text { Given: }\left(x_{1}, y_{1}\right) \text { and }\left(x_{2}, y_{2}\right) \\
x= & x \text {-coordinat e-independent variable } \\
b \Rightarrow & (0, b) \text { is } y \text {-intercept }
\end{aligned}
$$

if m is positive

if m is negative

Example 12.4

Svetlana tutors to make extra money for college. For each tutoring session, she charges a one-time fee of \$25 plus $\$ 15$ per hour of tutoring. A linear equation that expresses the total amount of money Svetlana earns for each
session she tutors is $y=25+15 x$. session she tutors is $y=25+15 x$.

* 25 starting price, when $x=0$
* $\$ \frac{5 \text { per hour chase }}{\$ 15}$

$$
m=\frac{\$ / 5}{1 h s} \text { slope }
$$

Once we've found comparative data, we can then plot a graph designating one set of data as the x variable or independent variable, and the other as the y variable or dependent variable. This graph is called a scatter plot.

A scatter plot is a graph of the ordered pairs (x, y) consisting of data from two data sets.

Example 1 Drawing and Analyzing a Scatter Plot
A medical researcher selects a sample of small hospitals in his state and hopes to discover if there is a relationship between the number of beds and the number of personnel employed by the hospital.
(a) Do you think there should be a relationship between these two data sets? Describe any relationship you'd expect.
(b) Draw a scatter plot for the data shown. Does it look like there's a relationship between the data sets?

No. of beds (\boldsymbol{x})	28	56	34		45	78	84	36	74	95
Personnel (\boldsymbol{y})	72	195	74	211	145	139	184	131	233	366

a.) Expect more beds \rightarrow move personnel
b.)

Looks like it's growing, but not "perfect relationship".

Analyzing a Scatter Plot
There are several types of relationships that can exist between the x values and the y values in a scatter plot. These relationships can be identified by looking at the pattern of the points on the graphs. The types of patterns and corresponding relationships are:

1. A positive linear relationship exists when the points fall approximately in an ascending straight line from left to right, where the x and y values increase at the same time. See Figure 11-26a.

Figure 11-26
2. A negative linear relationship exists when the points fall approximately in a descending straight line from left to right. See Figure 11-26b. In this case as the x values are increasing, the y values are decreasing.
3. A nonlinear relationship exists when the points fall in a curved line. See Figure 11-26c. The relationship is described by the nature of the curve.
4. No relationship exists when there is no discernible pattern to the points. See Figure 11-26d.

(a) straight line, u/positive slope
(b.) straight line sw/ negative slope
(c) nonlinear relationship (d) radon Jook ing

(a) Exponential growth pattern

Correlation Coefficient (r) - the number that describes hou close to a linear relationship between

Figure 11-27
Example 2 Estimating Correlation Coefficients
Based on our description of the correlation coefficient for two data sets, make an estimate of the correlation coefficient for each scatter plot in Figure 11-26.

$$
\text { a.) positive linens, closer to }+1
$$

bi) negative linear, closer to -1
cId) no linear relatrouship.

$$
\rightarrow \text { if } r=+1 \text { perfect positive linear relationship }
$$

$$
r=-1 \text { perfect nesctive linear relationship }
$$

Calculating the Value of the Correlation Coefficient

- Lecture: Signicance Levels and Regression

In order to find the value of the correlation coefficient, we will use the following formula:

Formula for Finding the Value of r :

$$
r=\frac{n\left(\sum x y\right)-\left(\sum x\right)\left(\sum y\right)}{\sqrt{\left[n\left(\sum x^{2}\right)-\left(\sum x\right)^{2}\right]\left[n\left(\sum y^{2}\right)-(\Sigma y)^{2}\right]}}
$$

where
$n=$ the number of data pairs
$\Sigma x=$ the sum of the x values
$\Sigma y=$ the sum of the y values
$\Sigma x y=$ the sum of the products of the x and y values for each pair
$\sum x^{2}=$ the sum of the squares of the x values
$\Sigma y^{2}=$ the sum of the squares of the y values

Example 3 Calculating a Correlation Coefficient

Find the correlation coefficient for the data in Example 1, and discuss what you think it indicates.

$$
n=10
$$

confidence 95% 99\% significance $5 \% \quad 1 \%$ chances were incorrect.

The minimum r value to have 1% chance of being wrong for sample size of 15 .

$$
|r|=.748>.632 ?
$$ Yes, significant at the 5% level.

\rightarrow \#beds and personnel is linearly related under 5\% significance
at 1% ? $|r|=.748>.765$?
No

$$
1 \% \text { value }
$$

$$
n=10^{\circ}
$$

\rightarrow \#beds and personnel is nit linearly related (c) 1% significance

Formulas for Finding the Values of \boldsymbol{a} and \boldsymbol{b} for the Equation of the Regression Line

$$
\begin{aligned}
& b=\frac{n\left(\sum x y\right)-\left(\sum x\right)\left(\sum y\right)}{n\left(\sum x^{2}\right)-\left(\sum x\right)^{2}} \text { slope } \\
& a=\frac{\Sigma y-b\left(\sum x\right)}{n} y \text { intercept }
\end{aligned}
$$

Example 5 Finding a Regression Line
Find the equation of the regression line for the data in Example 1.

$y=2.7077 x+20.118$
see ${ }^{\uparrow}$ Excel Sheet

The Relationship between r and the Regression Line

Two things should be noted about the relationship between the value of r and the regression line. First, the value of r and the value of the slope, b, always have the same sign. Second, the closer the value of r is to +1 or -1 , the better the points will fit the line. In other words, the stronger the relationship, the better the fit. Figure 11-29 shows the relationship between the correlation coefficient and the regression line.

Figure 11-29

One of the most useful aspects of finding a regression line is that it can be used to make predictions for one of the variables given a value for the other. This is illustrated in Example 5.

Example 6 Using a Regression Line to Make a Prediction

Use the equation of the regression line found in Example 5 to predict the approximate number of personnel for a hospital with 65 beds.

$$
\begin{aligned}
& \stackrel{\text { porsonel }}{y}=2.7077 x+20.118 \\
& y=2.7077(65)+20.118 \\
& y \approx 196.12 \text { personnel } \\
& y \approx 196 \text { personnel }
\end{aligned}
$$

