Permutations
In this section we will develop an even faster way to solve some of the problems we have already learned to solve by other means. Let's start with a couple examples.

Example 25
How many different ways can the letters of the word MATH be rearranged to form a fourletter code word?
$M \in H \quad A<$ one arrangement of letters
(M) $\bar{A} A$
$\begin{array}{lll}A & \text { T } & \text { H } \\ T & H & \end{array}$
use this to determine how many arrangements exist
2. $3 \cdot 2 \cdot 1=24$
\# of options for each space using counting rule multiply all options

MATH	AHMT	TAM	HATM
MAHT	AHTM	TAM	HAMS
MHAT	ATM	THAN	MAT
MHTA	ATHM	THMA	HMTA
MTAH	AMHT	TMHA	TAM
MTHA	AMTH	TMAH	HTMA

24 total outcomes 24 total arrangements for MATH
number of ways n objects can be arranged

Example 26
How many ways can five different door prizes be distributed among five people?

$$
\begin{aligned}
& 5!=\underline{5} \cdot \underline{4} \cdot \underline{3} \cdot \underline{2} \cdot \underline{1}=120 \text { different distributions } \\
& \begin{aligned}
7! & =7 \cdot 6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1 \\
& =7 \cdot 6! \\
7! & \quad!!=11 \cdot 10 \cdot 9 \cdot 8 \cdot 7!
\end{aligned} \\
& 7 \cdot 6 \cdot 5!\quad 1!=1
\end{aligned}
$$

The case of O !

$$
\begin{array}{ll}
3!=3 \cdot 2 \cdot 1 \\
2!=2 \cdot 1=\frac{3!}{3} & 0!=\frac{1!}{1}=\frac{1}{1}=1 \\
!!=1=\frac{2!}{2} & 0!=1
\end{array}
$$

\rightarrow There is one arrangement for 0 objects

Example 27
A charity benefit is attended by 25 people and three gift certificates are given away as door prizes: one gift certificate is in the amount of $\$ 100$, the second is worth $\$ 25$ and the third is worth $\$ 10$. Assuming that no person receives more than one prize, how many different ways can the three gift certificates be awarded? No replacement

$$
\begin{aligned}
& 25 \\
& \frac{24}{\$ 100} \frac{23}{\$ 25} \frac{25}{\$ 10} \quad \begin{array}{c}
25 \text { People } \\
\text { 2 nt } \\
\text { nd certificates } \\
\text { different values jndicate } \\
\text { order masters }
\end{array} \\
& { }_{25} P_{3}=25 \cdot 24 \cdot 23=13,800 \text { ways } \\
& 25 P_{3}=\frac{25!}{(25-3)!}=\frac{25!}{22!}=\frac{25 \cdot 24 \cdot 23 \cdot 23}{22!}=13,800 \text { ways }
\end{aligned}
$$

Example 28
Eight sprinters have made it to the Olympic finals in the 100-meter race. In how many different ways can the gold, silver and bronze medals be awarded?
$\overbrace{\text { no }}$ replacement
order matters

$$
\begin{aligned}
& \frac{8}{G} \frac{7}{5} \frac{6}{B} \quad{ }_{8} P_{3}=8 \cdot 7 \cdot 6=336 \text { different } \\
& 8 P_{3}=\frac{8!}{(8-3)!}=\frac{8!}{5!}=\frac{8 \cdot 7 \cdot 6 \cdot 5!}{5!} \\
& =336
\end{aligned}
$$

Permutations
${ }_{n} P_{r}=n \cdot(n-1) \cdot(n-2) \cdots(n-r+1)$
We say that there are ${ }_{n} P_{r}$ permutations of size r that may be selected from among n choices without replacement when order matters.

It turns out that we can express this result more simply using factorials.

$$
{ }_{n} P_{r}=\frac{n!}{(n-r)!}
$$

arrangements

Example 29
I have nine paintings and have room to display only four of them at a time on my wall. How many different ways could I do this? different anrangements

How many ways can a four-person executive committee (president, vice-president, secretary, treasurer) be selected from a 16 -member board of directors of a non-profit organization?
order matters
no replacement

16 members 4 spots

$$
\begin{aligned}
& { }_{16} P_{4}=\frac{16!}{(16-4)!}=\frac{16!}{12!}=\frac{16 \cdot 15 \cdot 14 \cdot 13 \cdot 12!}{12!}=43,680 \text { vacs } \\
& { }_{16} P_{4}=\underline{16} \cdot \underline{15 \cdot 14} \cdot \underline{13}=43,680 \text { ways }
\end{aligned}
$$

Try it Now 7
How many 5 character passwords can be made using the letters A through Z a. if repeats are allowed a. if repeats are allowed
b. if no repeats are allowed reptacencut is possible
a.) $26 \cdot 26 \cdot 26 \cdot 26 \cdot 26=26^{5}=11,881,376$
b) $\underline{26} \cdot 25 \cdot \underline{24} \cdot \underline{23} \cdot \underline{22}=7593,600$

$$
{ }_{26} P_{5}=\frac{26!}{(26-5)!}=\frac{2(!}{2!!}=\frac{2(\cdot 25 \cdot 24 \cdot 23 \cdot 22 \cdot 24)}{24!}=
$$

