Permutations

In this section we will develop an even faster way to solve some of the problems we have already learned to solve by other means. Let's start with a couple examples.

Example 25

How many different ways can the letters of the word MATH be rearranged to form a four-letter code word?

MT	H A cone	arrangenen	t of letters
M A T	A A A		
+1	ruse His to	determine	how many
	arrangencu	ts exist	
. 4 . 3	. 2 .] :	= 24	
# of 01	time for each.	Spa Ce	
	counting rule		11 options
MATH	AHMT	TAHM	HATM
MAHT	AHTM	TAMH	HAMT
MHAT	ATMH	THAM	HMAT
MHTA	ATHM	THMA	HMTA
MTAH	AMHT	TMHA	MTAM
MTHA	AMTH	TMAH	HTMA

number of ways nobjects can be arranged

Factorial
$$n! = n \cdot (n-1) \cdot (n-2) \cdots 3 \cdot 2 \cdot 1$$

$$N \text{ is a whole number.}$$

$$N \in \{0, 1, 2, 3, \dots, 3\}$$

Example 26

How many ways can five different door prizes be distributed among five people?

$$7! = 7 \cdot 6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1$$

$$= 7 \cdot 6!$$

$$7! = 7 \cdot 6 \cdot 5!$$

$$1!! = 11 \cdot 10 \cdot 9 \cdot 8 \cdot 7!$$

$$1!! = 1$$

The case of
$$0!$$
 $3! = 3 \cdot 2 \cdot 1$
 $2! = 2 \cdot 1 = \frac{3!}{3}$
 $0! = \frac{1!}{1} = \frac{1}{1} = 1$
 $1! = 1 = \frac{2!}{2}$

There is one arrangement for 0 objects

Example 27

A charity benefit is attended by 25 people and three gift certificates are given away as door prizes: one gift certificate is in the amount of \$100, the second is worth \$25 and the third is worth \$10. Assuming that no person receives more than one prize, how many different ways can the three gift certificates be awarded?

$$25P_{3} = 25 \cdot 24 \cdot 23 = 13,800 \text{ Ways}$$

$$25P_{3} = \frac{25!}{(25-3)!} = \frac{25!}{22!} = \frac{25 \cdot 24 \cdot 23 \cdot 22!}{22!} = 13,800 \text{ Ways}$$

Example 28

Eight sprinters have made it to the Olympic finals in the 100-meter race. In how many different ways can the gold, silver and bronze medals be awarded?

$$\frac{8}{G}$$
 $\frac{7}{5}$ $\frac{6}{B}$

$$8P_3 = \frac{8!}{(8-3)!} = \frac{8!}{5!} = \frac{8 \cdot 7 \cdot 6 \cdot 8!}{5!}$$

Permutations

$$_{n}P_{r}=n\cdot(n-1)\cdot(n-2)\cdot\cdot\cdot(n-r+1)$$

We say that there are ${}_{n}P_{r}$ **permutations** of size r that may be selected from among n choices without replacement when order matters.

It turns out that we can express this result more simply using factorials.

$$_{n}P_{r}=\frac{n!}{(n-r)!}$$

arrangements of nitems into r slots

Example 29

I have nine paintings and have room to display only four of them at a time on my wall. How many different ways could I do this?

no replacement different arrangements

$$994 = \frac{9!}{(9-4)!} = \frac{9!}{5!} = \frac{9 \cdot 8 \cdot 7 \cdot 6 \cdot 8!}{5!} = \frac{3024}{\text{Ways}}$$

90bjects 2 2 2 2 3024 different ways 4 spots

Example 30

How many ways can a <u>four-person</u> executive committee (<u>president</u>, <u>vice-president</u>, <u>secretary</u>, <u>treasurer</u>) be selected from a 16-member board of directors of a non-profit organization?

$$16 P_4 = \frac{16!}{(16-4)!} = \frac{16!}{12!} = \frac$$

Try it Now 7

How many 5 character passwords can be made using the letters A through Z

a. if repeats are allowed

replacement is possible

a.)
$$26 \cdot 26 \cdot 26 \cdot 26 \cdot 26 = 26^5 = 11,881,376$$

$$26P_{5} = \frac{26!}{(26-5)!} = \frac{2(!)}{2!!} = \frac{2(!25.29.23.22.21)}{2!!} =$$