Example 12:

The table below shows the number of survey subjects who have received and not received a speeding ticket in the last year, and the color of their car. Find the probability that a randomly chosen person:

- a) Has a red car and got a speeding ticket
- b) Has a red car or got a speeding ticket.

	Speeding ticket	No speeding ticket	Total
Red car	15	135	150
Not red car	45	470	515
Total	60	605	665

$$\frac{150}{665} + \frac{60}{665} = \frac{13}{665}$$

$$P(\text{led}) + P(\text{tricket}) - P(\text{led & Ticket})$$

$$P(\text{Red or Ticket}) = 1 - \frac{470}{665} = \frac{665}{665} - \frac{476}{665}$$

$$= \frac{115}{665}$$

Conditional Probability

Often it is required to compute the probability of an event given that another event has occurred.

Example 13

What is the probability that two cards drawn at random from a deck of playing cards will both be aces?

" P(E) · P(Ez)"

$$\frac{4}{52} \cdot \frac{3}{51} = \frac{12}{2652} = \frac{1}{221}$$

Conditional Probability

The probability the event B occurs, given that event A has happened, is represented as $P(B \mid A)$

This is read as "the probability of B given A"

Find the probability that a die rolled shows a 6, given that a flipped coin shows a head.

$$P(6) = \frac{1}{6}$$

Recall independent events: one event doesn't affect the

not

nutually exclusive: P(A and B)=0

$$P(6|H) = \frac{1}{6}$$

b/c there is no effect of coin flip on dice roll.

-> probability dues not change.

Example 15

The table below shows the number of survey subjects who have received and not received a speeding ticket in the last year, and the color of their car. Find the probability that a randomly chosen person:

- a) Has a speeding ticket given they have a red car
- b) Has a red car given they have a speeding ticket

	Speeding	No speeding	Total
	ticket	ticket	
Red car	15	135	150
Not red car	45	470	515
Total	60	605	665

an) # red cars = 150

speeding ficket and red car: 15

$$P(\text{ticket} | \text{red}) = \frac{15}{150} = \frac{1}{10}$$

$$*P(A|B) + P(B|A)$$

Conditional Probability Formula

If Events A and B are not independent, then

 $P(A \text{ and } B) = P(A) \cdot P(B \mid A)$

If you pull 2 cards out of a deck, what is the probability that both are spades?

no replacement after first draw #spades = 13 # rank = 52

2nd draw assimmes successinfint dian

$$P(Q t lon Q) = P(Q) \cdot P(Q | Q)$$

$$= \left(\frac{13Q}{52}\right) \left(\frac{12Q}{51}\right) = \frac{15b}{2652} = \frac{1}{17}$$

2.0588