The table below shows the number of survey subjects who have received and not received a speeding ticket in the last year, and the color of their car. Find the probability that a randomly chosen person:
a) Has a red car and got a speeding ticket
b) Has a red car or got a speeding ticket.

	Speeding ticket	No speeding ticket	Total
Red car	15	135	150
Not red car	45	470	515
Total	60	605	665

$$
\text { a.) } \frac{15 \text { red and speeding }}{665 \text { respondents }}=\frac{15}{665}-\frac{3}{133}
$$

| | Speeding
 ticket | No speeding
 ticket | Total |
| :--- | :--- | :--- | :--- | :--- |
| 1 | 15 | 135 | 150 |
| Red car | 15 | 470 | 515 |
| Not red car | 45 | 605 | 665 |
| Total | 60 | | |

$$
\begin{aligned}
& \frac{150}{665}+\frac{60}{665}-\frac{15}{665}=\frac{195}{665} \\
& \left.\frac{P(\text { led })+P(\text { ticket })-P(\text { Red \& Ticket })}{15+45+135} \frac{195}{665}=\frac{155}{665} \quad \text { (Red or Ticket }\right)
\end{aligned}
$$

$$
\begin{aligned}
P(\text { Red or Ticket })=1-\frac{470}{665} & =\frac{665}{665}-\frac{470}{665} \\
& =\frac{195}{665}
\end{aligned}
$$

Conditional Probability
Often it is required to compute the probability of an event given that another event has occurred.

Example 13
What is the probability that two cards drawn at random from a deck of playing cards will both be aces?
\rightarrow Assumption: these is no replacenuat after lIst card is drawn

$$
\text { lIst draw: } \frac{4 \text { AcES }}{52 \text { cords }}
$$

Ind draw: $\frac{3 \text { Ares }}{51 \text { cards }}$ \qquad
Ace and Ace

Conditional Probability
The probability the event B occurs, given that event A has happened, is represented as $P(B \mid A)$
This is read as "the probability of B given A "

Find the probability that a die rolled shows a 6, given that a flipped coin shows a head.

$$
P(6)=\frac{1}{6} \quad P(H)=\frac{1}{2}
$$

Recall independent events: one event doesn't affect the other
not
mutually exclusive: $P(A$ and $B)=0$
$P(G \mid H)=\frac{1}{G} \quad b / c$ there is no effect of coin flip on dice roll.
\rightarrow probability dues not change.

The table below shows the number of survey subjects who have received and not received a speeding ticket in the last year, and the color of their car. Find the probability that a randomly chosen person:
a) Has a speeding ticket given they have a red car
b) Has a red car given they have a speeding ticket

	Speeding ticket	No speeding ticket	Total
Red car	15	135	150
Not red car	45	470	515
Total	60	605	665

$$
\begin{aligned}
& \text { ai) \#red cars }=150 \\
& \text { speeding ticket and red car: } 15 \\
& P(\text { ticket } \mid \text { red })=\frac{15}{150}=\frac{1}{10}
\end{aligned}
$$

$$
\begin{aligned}
& \text { bi) \# speeding tickets : } 60 \\
& \text { \# red \& speeding : } 15 \\
& P(\text { red } \mid \text { ticketed })=\frac{15}{60}=\frac{1}{4}
\end{aligned}
$$

$$
* P(A \mid B) \neq P(B \mid A)
$$

Conditional Probability Formula
If Events A and B are not independent, then
$P(A$ and $B)=P(A) \cdot P(B \mid A)$

If you pull 2 cards out of a deck, what is the probability that both are spades?
\#spades $\mathbf{2} 13$ no replcerement after first draw
\# cards $=52 \quad 2 r d$ draw assumes successinfist draw

$$
\begin{aligned}
P\left(Q_{0} \text { then } Q\right) & =P\left(Q_{1}\right) \cdot P\left(\Omega \mid Q_{1}\right) \\
& =\left(\frac{130}{52}\right)\left(\frac{128}{51}\right)=\frac{156}{2652}
\end{aligned}=\frac{1}{17}
$$

