Events and Outcomes
The result of an experiment is called an outcome.
An event is any particular outcome or group of outcomes.
A simple event is an event that cannot be broken down further
The sample space is the set of all possible simple events.

Example 1
If we roll a standard 6 -sided die, describe the sample space and some simple events.

$$
\text { Outcome: }\{1,2,3,4,5,6\}
$$

event: evennumbers odd nurbess
sample space $\{$ even, odd $\}$

$$
\begin{aligned}
& \text { event: } \text { less then } 2: 1 \\
& \text { greeter than } 4: 5,6 \\
& \text { less than } 7: 1,2,3,4,5,6 \\
& \text { greater than } 7: \text { no out comes } \\
& \text { but that stillis } \\
& \text { an event. }
\end{aligned}
$$

$P(E)=$ Number of outcomes correspond ing to the event E
Total number of equally - likely outcomes
Probability of \# greater than 4 .

$$
P(x>4)=\frac{2}{6}=\frac{1}{3}
$$

Event: has 2 outcomes: 5,6

$$
\text { overall \# of outcomes: } 6 \quad\{1,2,3,4,5,6\}
$$

λ

Example 2
If we roll a 6-sided die, calculate
a) $\mathrm{P}($ rolling a 1)
b) P (rolling a number bigger than 4)
a.) $P(x=1)=\frac{1}{6}$ overall number of outcome that produces "1"
b.) V_{e} just discussed.

Let's say you have a bag with 20 cherries, 14 sweet and er if you pick a cherry at random, what is the probability that it will be sweet?

$$
\begin{aligned}
P(\text { sweet }) & =\frac{14 \text { sweet }}{20 \text { cherries }}=\frac{7}{10} \\
P(\text { sour }) & =\frac{6 \text { sour }}{20 \text { cherries }}=\frac{3}{10} \\
& =\frac{20 \text { cherries -14 sweet }}{20 \text { cherries }}=\frac{3}{10} \\
& =1-P(\text { sweet })=1-\frac{7}{10}=\frac{10}{10}-\frac{7}{10}=\frac{3}{10}
\end{aligned}
$$

Cards
A standard deck of 52 playing cards consists of four suits (hearts, spades, diamonds and clubs). Spades and clubs are black while hearts and diamonds are red. Each suit contains 13 cards, each of a different rank: an Ace (which in many games functions as both a low card and a high card), cards numbered 2 through 10 , a Jack, a Queen and a King.

Example 4
Compute the probability of randomly drawing one card from a deck and getting an Ace.
AC AS

$$
P(A)=\frac{4 \text { Aces }}{52 \text { cards }}
$$

$A \circ p A Q$
4 out comes of an Ace

$$
\text { out of } 52 \text { cards }
$$

total A

$$
\begin{aligned}
P(\operatorname{not} A)=\frac{48}{52} & =\frac{52-4}{52} \\
& =\frac{52}{52}-\frac{4}{52}=1-P(A)
\end{aligned}
$$

$$
\begin{aligned}
& P(\text { draw a Card }): \frac{52 \text { ruta-es }}{52 \text { cards }}: 1 \\
& M_{c x} \text { Probability: } 1 \leftarrow \text { certainty } \\
& M_{\text {in }} \text { Probability }: 0 \leftarrow \text { impossibility }
\end{aligned}
$$

Certain and Impossible events
An impossible event has a probability of 0 .
A certain event has a probability of 1 .
The probability of any event must be $0 \leq P(E) \leq 1$
Complementary Probability

$$
P(\text { not } A)=\left.\right|_{\substack{\text { certainty }}}-P(A)
$$

Complement of an Event
The complement of an event is the event " E doesn't happen"
The notation \bar{E} is used for the complement of event E.
We can compute the probability of the complement using $P(\bar{E})=1-P(E)$
Notice also that $P(E)=1-P(\bar{E})$

Example 5
If you pull a random card from a deck of playing cards, what is the probability it is not a heart?

There are 13 hearts in the deck, so $P($ heart $)=\frac{13}{52}=\frac{1}{4}$.
The probability of not drawing a heart is the complement:
$P($ not heart $)=1-P($ heart $)=1-\frac{1}{4}=\frac{3}{4}$

