compound interest - interest that builds off previous values of final

amounts

#### Example 1 **Comparing Simple and Compound Interest**

Suppose that \$5,000 is invested for 3 years at 8%.

- (a) Find the amount of simple interest.
- (b) Find the compound interest if interest is calculated once per year.

(b) Find the compound interest if interest is calculated once per year.

$$T = (5000)(.08)(3)$$

$$T = 51200$$

bi) Year 1 
$$\Rightarrow$$
 I = Prt  $t = 1$   $A = P + I$   $= 5000 + 400$   $= 45,400$ 

Year 2=> I=Pr+  
= 
$$(5,400)(.08)(1)$$
 =  $5400+432$   
=  $5432$ 

$$Y_{PAI} 3 = J = Prt$$

$$= (5832)(.08)(1) | A = P+I$$

$$= (5832)(.08)(1) | = 5832+411.56$$

$$= 4466.56 | = 6298.56$$

Developing Corporal Interest formula 
$$t=1$$
 $A = P + I = P(1 + rt)$ 

Year  $1 \Rightarrow 5400 = 5000 (1+(.08)) = 5000 (1.08)$ 

Year  $2 \Rightarrow .5832 = 5400 (108) = 5000 (1.08) (1.08) = 5000 (1.08)^2$ 

$$\frac{1}{2}$$
  $\frac{108}{2}$   $\frac{108}{2}$   $\frac{108}{2}$   $\frac{108}{2}$   $\frac{108}{2}$   $\frac{108}{2}$   $\frac{108}{2}$   $\frac{108}{2}$ 

Year 223 => 
$$5000(1.08)^{223}$$
 annual company interest

A=P(1+r) texpression growth.

### **Formula for Computing Compound Interest**

$$A = P\left(1 + \frac{r}{n}\right)^{nt}$$

where A is the future value (principal + interest)

r is the yearly interest rate in decimal form

n is the number of times per year the interest is compounded

t is the term of the investment in years

## A=?

## **Example 3** Computing Compound Interest

P= \$700

Find the interest on \$7,000 compounded quarterly at 3% for 5 years.

record at 3% for 5 years. 
$$r = 0.03$$
 $4 \times \text{per years}$ 
 $t = 5 \text{years}$ 

うりニリ

$$A = P(1 + \frac{r}{n})^{nt}$$

$$A = (7000)(1+\frac{(0.03)}{(4)})^{(4)}(5)$$

$$A = (7000) \left( \frac{4}{4} + \frac{0.03}{4} \right)^{20}$$

$$A=(7000)(\frac{4.03}{4})^{20}$$

Assume a 365-day year.

程制(000

t= byla's

Find the interest on \$11,000 compounded daily at 5% for 6 years.

r= 0.05

n = 365

$$A = P(1+\frac{C}{n})^{nt}$$

$$= (11,000)(1+\frac{(0.05)}{365})$$

= \$14,848.14 = finel value \*Not Interest

$$A = P + I$$
  
 $($14848.19) = (11,000) + I$   
 $-11,000.00 - 11,000$ 

\$3.848.19 = I = interest

### Example 5

# Finding the Time Needed to Reach an Investment Goal

A= 5000 P= 3000

If you want to save \$5,000 before buying your first new car, and you have \$3,000 right now to invest at 3% interest compounded monthly, how long will you have to wait?

$$n = 12$$

$$A=P(1+\frac{c}{n})^{nt}$$

$$|5000\rangle = (3000 \cdot (1 + \frac{(0.03)}{(12)})^{12-6}$$

$$\frac{5}{3} = \left(\frac{1+0.03}{12}\right)^{12+}$$

$$\frac{5}{3} = \left(\frac{12.03}{12}\right)^{12t}$$

$$\log\left(\frac{3}{3}\right) = \log\left(\left(\frac{12.03}{12}\right)^{12t}\right)$$

$$t = \frac{\log(\frac{5}{3})}{12 \log(\frac{12.03}{12})} \approx 17 \text{ years 1 month}$$

The effective rate (also known as the annual yield) is the simple interest rate which would yield the same future value over 1 year as the compound interest rate.

The next formula can be used to calculate the effective interest rate.

#### Formula for Effective Interest Rate

$$E = \left(1 + \frac{r}{n}\right)^n - 1$$

where

E = effective rate

n = number of periods per year the interest is calculated

*r* = interest rate per year (i.e., stated rate)

#### Example 6 **Finding Effective Interest Rate**

Find the effective interest rate when the stated rate is 4% and the interest

Find the electric interest rate when the stated rate is 
$$4\%$$
 and the interest is compounded weekly, then describe what your result means.

$$E = \left(1 + \frac{1}{1}\right)^{5} - \frac{1}{1}$$

$$= \left(\frac{52}{52} + \frac{04}{52}\right)^{57} - \frac{1}{1}$$

r = .04

E=(1+=)^-)

Which savings account is a better investment: 6.2% compounded daily or 6.25% compounded semiannually?

62%. Daily 
$$n=365$$
,  $r=062$ 

$$E = (1 + \frac{r}{n})^{n} - 1$$

$$= (1 + \frac{1062}{365})^{365} - 1$$

$$\approx 10644 - 6.40/0$$

$$6.25\% semionnully r = 062 p = 2$$

$$E = (1 + \frac{r}{n})^{n} - 1 \qquad * desmos corlc$$

$$E = (1 + \frac{0625}{2})^{2} - 1$$

$$E \approx 0.0634 - 6.3\%$$

\* Savings -> higher interest rate is better ou Best option is 6,2% daily.