







#### Lecture Outline

- 1. Plant communities and soil
- 2. Sedimentary, igneous & metamorphic rock
- 4. organic & inorganic
- 5. percolation
- 6. types & layers of soil
- 7. soil investigations
- 8. issues affecting bearing capacity
- 9. NYC geology
- 10. Accessing USGS maps

#### Geology

Geology is the scientific study of the structure and composition of the earth's surface

The earth is made up of very complex systems of rock, soil and water.





#### **Geology - Architects**

As architects we need to have a basic knowledge of geology to understand the nature of the site characteristics, to design adequate foundations and proper drainage. This knowledge also helps us to plan appropriate changes to the site.

We consult civil engineers for drainage, and structural engineers for building foundations.





#### **Types of Rock**

There are three types of rocks:

Sedimentary

Igneous

Metamorphic





#### **Rocks - Sedimentary**

Rocks formed by the deposition of transported sediments. This type of rock is formed by particles which have been transported by streams, ocean currents, ice or wind.

The particles could be sand, dirt, rocks or even skeletons, shells and parts of living creatures. The rock is laid down in layers and the most beautiful is often considered to be limestone.



# Rocks – Sedimentary, Contin.

Lithification is the process by which deposited sediments are converted to firm rock. This type of rock covers most of the earths surface.

Examples are sandstone shale

limestone





#### Rocks – Sedimentary, Contin.

#### Sandstone

resists weathering rugged topography

#### Shale

most common smooth flowing

topography

#### Limestone

prone to chemical weathering.





#### **Rocks - Igneous**

Igneous rocks are formed when molten rock material cools and solidifies on or beneath the earth's surface. It is hard, dense and strong with very high bearing capacity.

Granite





#### **Rocks - Metamorphic**

Rock formed from igneous or sedimentary rock as a result of heat, <u>pressure</u>, and chemical action.

Metamorphism is the process by which igneous or sedimentary rock is converted to metamorphic rock. It occurs mainly in mountainous areas.



#### Rocks – Metamorphic, Contin.

Foliated – arrangement of minerals in parallel layers along which the rock easily splits into thin flakes or slabs.

Slate

Schist

Gneiss







#### Soil

Soil is a natural mineral, formed of decomposed and disintegrated parent rock, that supports plant life.

The properties of soil are affected by a number of factors: the nature of parent rock, climate, topography, age and vegetation.





#### Soil Horizons

Soil is divided into horizontal layers called horizons.

The three main horizon layers are the A, B and C layers.







#### **B** Horizon

Also called the subsoil

- this layer is beneath the E Horizon and above the C Horizon.

It contains clay and mineral deposits (like iron, aluminum oxides, and calcium carbonate) that it receives from layers above it when mineralized water drips from the soil above.





#### **R** Horizon

The unweathered rock (bedrock) layer that is beneath all the other layers.





#### Soil Classifications

There are many different ways of classifying soil based on its uses.

As Architects we are most interested in systems based on particle size since that largely determines 3 important soil qualities:

Drainage Bearing Capacity Erodibility



#### US Department of Agriculture Soil Classifications

- Sand
- Silt
- Clay
- This is too narrow for us so we also look at
- Gravel
- Organic Soils





#### Sand .002 to .25

Sand is a coarse grained soil whose particles are .002 to .25 inches in diameter



#### Silt .002 to .00008

Silt is a fine grained soil whose particles are .002 to .00008 inches in diameter





#### Clay smaller than .00008

Clay is a finegrained soil whole particles are smaller than .00008 inches in diameter



#### Gravel

Gravel is a coarse grained soil whose particles are larger than .25 inches in diameter.

It has good to excellent drainage characteristics and bearing capacity.

#### larger than .25





## **Organic Soils**

Organic soils such as peat have poor drainage and very low bearing capacity



#### **Unified Soil Classification System**

Soils are divided into various sub-categories

- 1. coarse grained (gravel and sands)
- 2. fine grained (very fine sands, silts and clay)
- 3.highly organic <u>soils</u>, such as, peat, poor drainage and very poor bearing capacity



|                       | the second         |                                    | UNIFIED SOIL CLASSIF                                                                                                           | ICATION SYS                  | TEM                                 |                                 |
|-----------------------|--------------------|------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|------------------------------|-------------------------------------|---------------------------------|
|                       |                    |                                    | NAME                                                                                                                           | FOUNDATION                   | COMPRESSI-<br>BILITY &<br>EXPANSION | DRAINAGE<br>CHARACTER<br>ISTICS |
|                       |                    | Gravel<br>and<br>Gravelly<br>Soils | GW well-graded gravels or gravel-<br>sand mixtures, little or no fines                                                         | excellent                    | almost none                         | excellent                       |
|                       |                    |                                    | GP poorly-graded gravels or gravel-<br>sand mixtures, little or no fines                                                       | good to<br>excellent         | almost none                         | excellent                       |
|                       |                    |                                    | GM silty gravels, gravel-sand-silt<br>mixtures                                                                                 | good to<br>excellent         | very slight                         | fair to poor                    |
| and the second        | COARSE-<br>GRAINED |                                    | GC clayey gravels, gravel-sand-clay mixtures                                                                                   | good                         | slight                              | poor                            |
|                       | SOILS              | Sand                               | SW well-graded sands or gravelly sands, little or no fines                                                                     | good                         | almost none                         | excellent                       |
| 1 - 27-               |                    | and                                | SP poorly-graded sands or gravelly<br>sands, little or no fines                                                                | fair to good                 | almost none                         | excellent                       |
| A LEY                 |                    | Soils                              | SM silty sands, sand-silt mixtures<br>SC clayey sands, sand-clay mixtures                                                      | fair to good<br>poor to fair | very slight<br>slight to medium     | fair to poor<br>poor            |
| -                     |                    |                                    | ML inorganic silts and very fine<br>sands, rock flour, silty or clayey<br>fine sands or clayey silts with<br>slight plasticity | fair to poor                 | slight to medium                    | fair to poor                    |
| a sere                |                    | Silts<br>and<br>Clays              | CL inorganic clays of low to medium<br>elasticity, gravelly clays, sandy<br>clays, silty clays, lean clays                     | fair to poor                 | medium                              | practically<br>impervious       |
| T cent                | FINE-              |                                    | OL organic silts and organic silty<br>clays of low plasticity                                                                  | poor                         | medium to high                      | poor                            |
| And the               | GRAINED<br>SOILS   | Silts<br>and                       | MH inorganic silts, micaceous or<br>diatomaceous fine sandy or silty<br>soils, elastic silts                                   | poor                         | high                                | poor to fair                    |
| and the second second | ,                  |                                    | CH inorganic clays of high plasticity,                                                                                         | poor to                      |                                     | practically                     |
| A CONTRACT OF         |                    |                                    | fat clays                                                                                                                      | very poor                    | high                                | Impervious                      |
|                       |                    | Ciays                              | OH organic clays of medium to high<br>plasticity, organic silts                                                                | very poor                    | high                                | inpervious                      |
| and the second        | HIGHLY (           | ORGANIC                            | P <sub>t</sub> peat and other highly organic soils                                                                             | not suitable                 | very high                           | fair to poor                    |



## Soil Investigations

- 1. Test pit
- 2. Test boring
- 3. Soil boring log
- 4. Research





### Test Pit

A Test pit is an excavation made to expose the subsurface soils for an in-place examination





### **Test Boring**

Test boring is a hole drilled into the ground, from which samples or undisturbed subsurface soils are obtained for laboratory inspection and testing





## Soil Boring Log

A soil boring log is a graphic representation of the soils encountered in a test boring.



#### **Bearing Capacity**

Bearing Capacity is the ability of a soil to support a structural load.

| TABLE 5-1 | Safe | Loads | on | Earth | Foundation |
|-----------|------|-------|----|-------|------------|
| Beds      |      |       |    |       |            |
|           |      |       |    |       |            |

| MATERIAL                          | LOAD<br>(lb/ft <sup>2</sup> ) |
|-----------------------------------|-------------------------------|
| Hard rock                         | 80,000                        |
| Medium rock                       | 30,000                        |
| Hardpan                           | 20,000                        |
| Soft rock                         | 16,000                        |
| Gravel                            | 12,000                        |
| Sand, firm and coarse             | 8,000                         |
| Clay, hard and dry                | 8,000                         |
| Sand, fine and dry                | 6,000                         |
| Ordinary firm clay                | 4,000                         |
| Sand and clay, mixed or in layers | 4,000                         |
| Sand, wet                         | 4,000                         |
| Clay, soft                        | 2,000                         |
| Alluvial soil                     | 1,000                         |

Source: J. D. Carpenter, ed., Handbook of Landscape Architectural Construction (Washington, D.C.: Landscape Architecture Foundation, 1973), p. 239.



#### Nature of Soil

Soils vary in their bearing capacities.

Clays and silts have a fair ability to support loads; organic soils are unsuitable.

See chart.



# Problems encountered that may result in poor bearing capacity

- •Subsidence
- •Previous building
- •Nature of soil
- •Expansive soils
- •Seasonal changes





#### Subsidence

Subsidence is the sinking of the land because of organic fill, or the pumping out of oil, gas or water.





#### **Previous Building**

Foundations must rest on undisturbed soil.

If a building was previously on the site, the new foundation must go below the level of the old foundations.





## **Expansive Soil**

Expansive soil Refers to clay which swells when wet and shrinks when dry.

Piers or footings must go below the depth of seasonal change and must be protected from the surrounding expansive soil.



# Seasonal Changes

In the winter, soil freezes and expands. In the summer, the soil contracts.

**Frost line** is the deepest penetration of frost below grade. Foundations must be below this level.



#### Methods of Overcoming Poor Bearing Capacity

<u>Compaction</u> is the reduction of soil volume by pressure from grading machinery.

<u>Piles</u> rely on the support of friction.

The foundation may go down to <u>bedrock</u>.







Fordham Gneiss beneath Belvedere Castle, Central Park, image credit Stig Nygaard © 2005

Manhattan Schist, Edgecombe Avenue, image credit John Seitz © 2010





