
Cam
era

-re
ad

yPorting the NetBeans Java 8 Enhanced for
Loop Lambda Expression Refactoring to Eclipse

Md Arefin Raffi Khatchadourian
City University of New York

md.arefin@mail.citytech.cuny.edu rkhatchadourian@citytech.cuny.edu

Abstract
Java 8 is one of the largest upgrades to the popular language
and framework in over a decade. However, the Eclipse IDE is
missing several key refactorings that could help developers
take advantage of new features in Java 8 more easily. In this
paper, we discuss our ongoing work in porting the enhanced
for loop to lambda expression refactoring from the NetBeans
IDE to Eclipse. We also discuss future plans for new Java 8
refactorings not found in any current IDE.

Categories and Subject Descriptors D.2.7 [Software En-
gineering]: Distribution, Maintenance, and Enhancement

Keywords Java 8, refactoring, lambda expressions

1. Introduction
Java 8 is one of the most significant upgrades to Java pro-
gramming language and framework in over a decade. It pro-
vides supports for functional programming, a new JavaScript
engine, new APIs for date time manipulation, a new stream
API, and more [4]. Such features can help make programs
easier to read, write, and maintain [2].

Among the new Java 8 features, lambda expressions are
touted to be most significant. Lambda expression simplify
the development process by facilitating functional program-
ming. They also provide a concise way to write anonymous
inner classes and make it easier to iterate through, filter, and
exact data from a Collection [3].

Eclipse (http://eclipse.org) is one of the most pop-
ular IDEs for Java. While Eclipse has incorporated several
Java 8 feature quick-fixes and refactorings, there are still
many features left to be done. For example, the NetBeans
IDE (http://netbeans.org) has a refactoring (originally

proposed by Gyori et al. [2]) that converts enhanced for
loops to a lambda expression. This paper discusses our ongo-
ing work in exploring the porting of such conversion mech-
anisms from NetBeans to the Eclipse IDE.

Making such changes manually would require changing
approx. 1,700 line of non-commented, non-blank lines of
code across approx. 100 files per project, on average [2].
With our plug-in, Eclipse developers would not need to make
these changes manually. Our tool will help Eclipse develop-
ers adopt the functional-like programming model offered by
Java 8. Furthermore, we are in the process of exploring other
Java 8 refactorings that do not currently exist in any IDE.

2. Examples
In this section, we will present several examples of how the
final version of our plug-in will work on pre-Java 8 code.
Assume we have a List , and suppose we wished to print each
element of the list. In pre-Java 8, we can use for (String s :
list ) System.out. println (s) to do so.

One possible refactoring to use lambda expressions would
be list .forEach(s → System.out.println(s)). Here, we call the
new forEach() method on the list, passing the lambda expres-
sion s → System.out.println(s), meaning that each String in the
list (each of which gets bound to s) is passed to the println ()
method.

Another possible lambda expression refactoring would be
list .forEach(System.out:: println ). In this case, we again call
the forEach() on the list but this time, instead of passing
a lambda expression, we pass a method reference, a new
concept in Java 8 as well. Here, we refer to the println ()
method of the PrintStream class. When the lambda expression
is processed, the println () method is called on the object
referred to by the out variable.

Yet, another possible refactoring is one where the new
stream API, which allows for parallel processing, would be
list .stream().forEach(System.out:: println ). This code sequen-
tially processes the list, while list . parallelStream () .forEach(
System.out:: println ) processes it in parallel.

http://eclipse.org
http://netbeans.org


Cam
era

-re
ad

y
Figure 1. Refactoring API Elements

Figure 2. Refactoring Life-Cycle

3. Eclipse Refactoring Model
This project involves developing a refactoring plug-in for
Eclipse, which work in the following way:

• The API for refactoring provides a process-level abstrac-
tion upon which specific refactorings may be built.

• Figure 1 shows elements of this abstraction at a high
level. Arrows between elements represent dependencies.

• Once a refactoring has been initiated, an implementer of
that refactoring is used to coordinate condition checking,
gathering details about the refactoring, and ultimately
produce a series of changes that may be applied to the
Eclipse workspace to accomplish the refactoring.

• This implementer can extend the abstract class
org. eclipse . ltk . core . refactoring . Refactoring . The life-cycle
for this class is shown in Figure 2.

4. Implication and Preconditions
Although many enhanced for loops can be converted to
lambda expressions, there are some precondition to check.
For example, lambda expression bodies cannot reference
variables that are not final or effectively final (i.e., the vari-
able could have been marked as final) [1]. Below are some
preconditions for the lambda conversion [2].

1. The conversion must be semantics-preserving. That is,
the behavior of the program prior to the refactoring must
match that of after the refactoring.

2. The for loop must iterate over an instance of a Collection
as this is where stream() is declared.

3. The body of the initial for loop must not throw a checked
exception.

4. The body of the initial for loop must not have more than
one reference to a local, non-effectively final variable
defined outside the loop.

5. The loop body must not contain a break, continue state-
ment as these semantics cannot be expressed via a lambda
expression.

From our experience, we believe that these preconditions
are sufficient for the kinds of loops being refactored. It would
also be possible to refactor loops over Iterables as it declares
forEach(). Moreover, it would be helpful to prove the sound-
ness. We designate these tasks for future work.

5. Current State of Progress
As we are making progress toward the implementation, one
of the technical challenges we face is the difference be-
tween the Eclipse and NetBeans refactoring and source code
representation models. The IDEs use different libraries for
these purposes, e.g., NetBeans uses primarily javac libraries,
while Eclipse uses the Java Development Tools (JDT). For
instance, NetBeans has API for retrieving uncaught excep-
tions in an AST subtree, while the JDT does not expose
such external API. To check the corresponding precondi-
tion, we implemented this functionality ourselves. The plug-
in is open source and publicly available at http://git.io/
lambdarefact.

6. Conclusion and Future Work
Java is a highly used programming language in industry,
and Java 8 is one of the most significant upgrades to the
language. Eclipse is a popular IDE for Java. The purpose
of our project is to allow Eclipse developers to automatically
refactor their legacy Java software to use new Java 8 features.
We are currently in the process of porting an enhanced for
loop refactoring from NetBeans to Eclipse. In future, we
plan to develop refactorings for Java 8 that do not currently
exist in any IDE.

References
[1] J. Gosling, B. Joy, G. Steele, G. Bracha, and A. Buckley. The

Java Language Specification. Pearson Education, 2014.
[2] A. Gyori, L. Franklin, D. Dig, and J. Lahoda. Crossing the gap

from imperative to functional programming through refactor-
ing. In Foundations of Software Engineering, 2013.

[3] Oracle Corporation. Java SE8: Lambda quick start, 2015. URL
http://www.oracle.com/webfolder/technetwork/
tutorials/obe/java/Lambda-QuickStart/index.html.

[4] Oracle Corporation. What’s new in jdk 8, 2015. URL
http://www.oracle.com/technetwork/java/javase/
8-whats-new-2157071.html.

http://git.io/lambdarefact
http://git.io/lambdarefact
http://www.oracle.com/webfolder/technetwork/tutorials/obe/java/Lambda-QuickStart/index.html
http://www.oracle.com/webfolder/technetwork/tutorials/obe/java/Lambda-QuickStart/index.html
http://www.oracle.com/technetwork/java/javase/8-whats-new-2157071.html
http://www.oracle.com/technetwork/java/javase/8-whats-new-2157071.html

	Introduction
	Examples
	Eclipse Refactoring Model
	Implication and Preconditions
	Current State of Progress
	Conclusion and Future Work

