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Abstract—Pointcut fragility is a well-documented problem in
Aspect-Oriented Programming; changes to the base-code can
lead to join points incorrectly falling in or out of the scope of
pointcuts. Deciding which pointcuts have broken due to changes
made to the base-code is a daunting task, especially in large
and complex systems. We present an automated approach that
recommends pointcuts that are likely to require modification
due to a particular base-code change, as well as ones that do
not. Our hypothesis is that join points selected by a pointcut
exhibit common structural characteristics. Patterns describing
such commonality are used to recommend pointcuts that have
potentially broken to the developer. The approach is implemented
as an extension to the popular Mylyn Eclipse IDE plug-in, which
maintains focused contexts of entities relevant to the task at hand
using a Degree of Interest (DOI) model. We show that it is useful
in revealing broken pointcuts by applying it to multiple versions
of several open source projects and evaluating the quality of the
recommendations produced against actual modifications.

I. INTRODUCTION

Although using Aspect-Oriented Programming (AOP) [1]
can be beneficial to developers in many ways [2–5], such sys-
tems have potential for new problems unique to the paradigm.
A key construct that allows code to be situated in a single
location but affect many system modules is a query-like
mechanism called a pointcut expression (PCE). PCEs specify
well-defined locations (join points) in the execution of the
program (base-code) where code (advice) is to be executed. In
AspectJ [6], an AOP extension of Java, join points may include
calls to certain methods, accesses to particular fields, and mod-
ifications to the run time stack. In this way, AOP allows for
localized implementations of so-called crosscutting concerns
(or aspects), e.g., logging, persistence, security. Without AOP,
aspect code would be scattered and tangled with other code
implementing the core functionality of the modules.

As the base-code changes with possibly new functionality
being added, PCEs may become invalidated. That is, they
may fail to select or inadvertently select new places in the
program’s execution, a problem known as PCE fragility [7].
Deciding which PCEs have broken is a daunting venture,
especially in large and complex systems. In software with
many PCEs, seemingly innocuous base-code changes can have
wide effects. To catch these errors early, developers must
manually check all PCEs upon base-code changes, which is
tedious (potentially distracting developers), time-consuming
(there can be many PCEs), error-prone (broken PCEs may not
be fixed properly), and omission-prone (PCEs may be missed).

Several approaches combat this problem by proposing new
PCE languages with more expressiveness [8–13], limiting
where advice may apply [14,15], or enforcing constraints on
advice application [16–19]. Others make advice applicability
more explicit [20] or do not use PCEs [21–23]. However,
each of these tend to require some level of anticipation and,
consequently, when using PCEs, there may nevertheless exist
situations where PCEs must be manually updated. Further-
more, when using more expressive PCE languages, the rules
in which the base-code must respect may be complex. Hence,
although these languages may reduce fragility, they may render
detection of broken PCEs more difficult [24].

Other approaches offer tool-support for detecting broken
PCEs. The AspectJ Development Tools (AJDT) [25], which
displays current join point and PCE matching information,
does not indicate which PCEs do not select a given join
point nor which are likely broken due to a new join point.
Ye and Volder [26] augment the AJDT with almost matching
join point information by relaxing PCEs using developer-
minded heuristics but do not detect situations where join
points are unintentionally selected by PCEs. Wloka et al.
[27] automatically fix PCEs broken by refactorings, however,
manual base-code edits may also break PCEs. In our previous
work [28], we periodically suggest join points that may require
inclusion by a PCE. Yet, developers must manually detect
broken PCEs, as well as determine how frequently to check.

In this paper, we present an automated approach that rec-
ommends a set of PCEs that are likely to require modification
due to a particular base-code change. Our approach has been
implemented as an automated AspectJ source-level inferencing
tool called FRAGLIGHT, which is a plug-in to the popular
Eclipse IDE [29]. FRAGLIGHT identifies, as the developer
is making changes to the base-code, PCEs that have likely
broken within a degree of change confidence. Based on how
“confident” we are in the PCE being broken, FRAGLIGHT
presents the results to the developer by manipulating the
Degree of Interest (DOI) model of the Mylyn context [30].

Mylyn [31] is a standard Eclipse plug-in that facilitates
software evolution by focusing graphical components of the
IDE so that only artifacts related the currently active task are
revealed to the developer [32]. The context is comprised of the
relevant elements, along with information pertaining to how
interesting the elements are to the related task. The more a
developer interacts with an element (e.g., navigates to the file,



edits the file) when working on a task, the more interesting
the element is deemed to be, and vice-versa.

In Mylyn, elements may also become interesting implicitly.
For example, a package may become interesting if a class
within the package is edited. FRAGLIGHT implicitly makes
PCEs that are more likely broken more interesting, i.e., by
increasing its DOI value, while implicitly making PCEs that
are less likely broken to be less interesting, i.e., by decreasing
its DOI value. In this way, possibly broken PCEs are presented
to the developer in a variably invasive way. In other words,
PCEs that likely need to the attention of the developer are
presented more prominently in the IDE than ones that are
less likely. The developer can then make alteration decisions
based on FRAGLIGHTś recommendations, possibly adjusting
the PCE or the base-code to rectify the problem. Our approach
enables developers to discover problematic PCEs early in
development so that they may be fixed before causing bugs
that may compound over time. FRAGLIGHT alleviates much
of the burden associated with identifying broken PCEs, making
these systems easier to maintain.

FRAGLIGHT’s recommendations are based on harnessing
unique and arbitrarily deep structural commonalities between
program elements corresponding to join points selected by
a PCE in a particular software version. In [28], we showed
that the majority of program elements corresponding to join
points selected by a PCE in one base-code version shared
such characteristics between them, and that these relationships
persisted in subsequent versions. In this paper, we use this
premise to detect broken PCEs on-the-fly.

This paper goes beyond [28] in that it:
Solves a different problem. Our previous approach, geared
towards aspect developers1, periodically suggests join points
that may require inclusion in to a revised version of a PCE.
Aspect developers may revise PCEs, possibly after course-
grained base-code changes, depending on the provided join
point suggestions. Our new approach, geared towards base-
code developers, however, suggests PCEs that may have
broken due to a single revision to the base-code. Here,
we provide base-code developers with immediate feedback
following fine-grained base-code changes that may have
broke PCEs using a new, incremental algorithm. Base-code
developers may then revise the base-code depending on the
suggestion provided by this new approach.

Presents a new, incremental algorithm. While our previous
approach works with only a single PCE at a time, in
this paper, our incremental approach avoids rebuilding and
analyzing the base-code for each PCE. A new, incremental
algorithm is developed to enable on-the-fly, broken PCE
detection. A new confidence equation for PCEs is presented
that corresponds to the probability that the PCE has broken
due to a base-code change.

Integrates with Mylyn. Our new approach is integrally tied
to the Mylyn DOI, a proven, successful, and familiar model.

1The distinction between aspect and base-code developers has been well
documented. This is particularly relevant in regards to reusable aspects [33].

Listing 1. A point on a Cartesian plane.
1 public class Poin t implements Figure {
2 private double x ; private double y ;
3 public void setX ( double x ) { th is . x=x ;}
4 public void setTwiceX ( double x ) { th is . x=2∗x ;}
5 public double getY ( ) {return y ;}}

Listing 2. An aspect managing how Figures are displayed.
1 public aspect Disp layMan ipu la t ion {
2 a f te r ( ) :
3 execution (∗ Figure +. set ∗ ( . . ) )
4 {Disp lay . update ( ) ;}
5 double around ( ) :
6 execution ( double Figure +. get ∗ ( . . ) )
7 { r e t u r n proceed ( ) ∗0.5;}}

Our key contributions can be summarized as follows:
Algorithm design. We present an automated approach that
programmatically manipulates the Mylyn DOI model to bring
broken PCEs to the base-code developer’s attention early. The
developer is informed, with a subtly that varies on likelihood,
when their code is likely to break PCEs as it is being written.

Implementation and experimental evaluation. To ensure
real-world applicability, we implemented our approach was
as a seamless, publicly available extension to the Mylyn.
A study on 14 version changes consisting of 5,711 base-
code edits of AspectJ programs indicates that the technique is
effective and practical in detecting broken PCEs as the base-
code developer types. Upon completion of the experiments,
the average DOI value of PCEs that actually broke were, on
average, 2.5 times greater than that of PCEs that did not break
throughout versions. This indicates that using our approach
results in broken PCEs being 2.5 times more prominently
displayed in the IDE than unbroken PCEs, bringing broken
PCEs to the forefront while keeping unbroken PCEs in the
background. These results advance the state of the art in
automated tool-support for AOP evolution.

II. MOTIVATING EXAMPLE

We motivate our approach using a simple yet classic graph-
ics application inspired by Kiczales et al. [6]. Though the
example is small, we use its simplicity to detail our approach.

Listing 1 portrays a code snippet of a simple Point class
(line 1) that implements a Figure (interface not shown) on
a Cartesian plane. There are two instance fields, x and y, de-
clared on line 2. Also, there are two mutator instance methods
for field x (mutators for y have been omitted for presentation
purposes), namely, setX(double), declared on line 3, which
assigns field x to be the argument, and setTwiceX(double),
declared on line 4, which assigns field x to be double the
argument. Furthermore, there is an accessor instance method
for field y (the accessor for x has been omitted for presentation
purposes), declared on line 5, that returns the field value.

As Figures may be maneuvered in many different editor
modules, the DisplayManipulation aspect snippet (Listing 2)
localizes the code for manipulating how Figures are displayed.
The after advice (line 2) refreshes the Display (line 4, code not
shown) whenever the state of a Figure is altered. This advice is



implicitly executed after control leaves any join point selected
by its bound PCE (line 3). These join points correspond to
the execution of any method implementing a method of the
Figure interface (Figure+) whose name begins with set, takes
any number and type of parameters, and returns any type of
value. In Listing 1, this corresponds to the execution of the
setX(double) and setTwiceX(double).

Likewise, the around advice (line 5) scales Figures by 50%.
The advice body (line 7) is implicitly executed around join
points matching its bound PCE (line 6). Such join points cor-
respond to the execution of methods implementing a method
in the Figure interface whose name begins with get, taking
any number and types of parameters, and returning any value.
In Listing 1, this corresponds to the execution of the getX()
method. When executed, the advice body first proceeds to

execute the selected join point, multiplies the return value by
the scaling factor, and returns the resulting value in its place.

Suppose that in this version, both PCEs are correct, i.e., they
select all and only the intended join points. Now suppose that
in a subsequent version, a new method move(double,double),
which moves figures according to the specified coordinates, is
added to the Figure interface. A corresponding implementation
is then added to the Point class:

Listing 3. A new method is added to move Figures using coordinates.
1 public void move( double x , double y )
2 { th is . x=x ; th is . y=y ;}

Clearly, this new method alters the state of Figures, however,
the PCE bound to the after advice, which refreshes the Display
following state changes to Figures, on line 3 of Listing 2 fails
to select this new join point. As a result, this PCE breaks2.
Notice, however, that the PCE bound to the around advice,
which scales figures, does not break and thus continues to
select all and only the desired join points.

In general, each incremental change to the base-code can
potentially break PCEs and thus cause bugs. If developers
wait until many such changes, problems may be compounded
and more difficult to find. To alleviate this, developers could
perform a global analysis of all aspects and verify that each
PCE is correct after every incremental change. However,
not only would such an activity be distracting to base-code
developers, it could also be non-trivial. Although this simple
example contains only two PCEs, larger, more realistic systems
may contain many more PCEs whose correctness would need
to be verified. It would thus be helpful for developers if broken
PCEs could be brought to their attention early. It would also be
helpful if unbroken PCEs were kept in the “background” as no
action would be required. That way, the base-code developers
may continue coding when an error is less likely and pause
work otherwise. Rectifying such a problem would involve
either changing the base-code so that it is correctly selected
(or not selected) by the problematic PCE, or by altering the

2This PCE could have instead selected field set join points, which would
have seemingly solved the problem. However, interfaces do not contain
variable instance fields. Moreover, in the case of the Point class, the Display
would have been refreshed twice, which could be inefficient.

β
PCE

π̂

α

β

PCE

π̂

α

β

PCE

π̂

α

1 2

4

New Join Point New Join Point

New Join Point

β
PCE

π̂

α

3New Join Point

All join points All join points

All join pointsAll join points

Fig. 1. Determining PCE breakage due to a JPS addition.

PCE itself. In the following sections, we will demonstrate how
FRAGLIGHT can automatically alleviate such problems.

III. APPROACH

A. Overview

Fig. 1 depicts Venn diagrams of four canonical situations
and how FRAGLIGHT applies. In each, the universe is all of
the program’s join point shadows (JPSs), which are the static
counterparts of join points, i.e., points in the program text
where the compiler may insert advice code [34].

We treat a program as a set of JPSs that may or may not
be under the influence of advice, which helps simplify the
presentation. Furthermore, we define a PCE to be a subset of
JPSs, thus eliminating the need to consider complex expression
constructs. We also assume that the PCE is free of dynamic
conditions, which allows us to exploit solely static information
in our analysis. Our implementation conservatively relaxes
this assumption (discussed in §IV-A) so that PCEs utilizing
dynamic conditions may nevertheless be used as input to our
tool. The impact of this limitation is minimal [28]. Moreover,
there is evidence that suggests that most PCEs do not take
advantage of dynamic conditions [35].

FRAGLIGHT predicts how likely each PCE is to change
given a change in the base-code. We model base-code changes
as a series of JPS additions and removals, with each added
JPS in the series being used as input Changing a JPS, e.g.,
renaming a method, is modeled as the addition of a new JPS,
e.g., the new method’s execution.
Example 1. Adding the move() method in Listing 3 would
result in three new JPSs, namely, execution(void Point.move(
double,double)), set(Point.x), and set(Point.y), with the latter
two being on line 2 in Listing 3.

In the scenarios depicted in Fig. 1, a single PCE in the
program is portrayed to simplify the presentation. The region
labeled PCE represents the set of all JPSs selected by the
PCE. The region labeled π̂ represents all JPSs corresponding to
program elements matched by a particular structural pattern.
Structural patterns depict organizational relationships between



program elements, e.g., all methods declared by a class (a
single depth pattern), all methods whose bodies textually
contain a call to methods whose bodies include a statement
that writes to a particular field (a multi-depth pattern).

Again for simplification, Fig. 1 presents a single structural
pattern, whereas many structural patterns may exist in a given
program. The α and β metrics, which are related to type I
and type II errors, respectively, are used for measuring the
similarity between a particular PCE and structural pattern
(discussed in §III-B1). α measures how closely a pattern
resembles a PCE, while β measures its completeness.

Program elements corresponding to JPSs selected by a PCE
share a high degree of structural commonality iff there exists
structural patterns that have small α and β errors w.r.t. the
PCE. Conversely, elements corresponding to JPSs selected by
a PCE do not share a high degree of commonality iff there
exists patterns that have large α and β errors w.r.t. the PCE.

We now describe how predictions are made in each of the
four situations in Fig. 1, where we consider a single PCE,
structural pattern, and input JPS. The numbers at the bottom
right corner of the diagrams correspond to the numbers below:

1) If a new JPS is added to the base-code that shares a
high degree of structural commonality with JPSs selected
by an existing PCE and is not selected by the PCE, we
consider the PCE to be more “interesting,” as it may need
to be altered to include the new join point.

2) If a new JPS is added to the base-code that does not
share a high degree of structural commonality with JPSs
selected by the PCE and is not selected by the PCE, we
consider the PCE to be less “interesting,” as it is unlikely
that the PCE needs to include the new join point.

3) If a new JPS is added to the base-code that shares a high
degree of structural commonality with JPSs selected by
the PCE and is selected by the PCE, we consider the PCE
to be less “interesting,” as it is unlikely that the PCE needs
to exclude the new join point.

4) If a new JPS is added to the base-code that does not
share a high degree of structural commonality with JPSs
selected by the PCE and is selected by the PCE, we
consider the PCE to be “more” interesting as it may need
to be altered to exclude the new join point.

B. Workflow Details

1) Phase I: Analysis:
a) Pointcut Analysis Scope: The analysis phase (Fig. 2)

is triggered when a Mylyn task is activated (step 1). At this
time, a set of advice-bound PCE representations is collected
from the current pointcut analysis scope (PAS), which is based
on the degrees-of-separation concept used by Kersten and
Murphy [32] in their Active Search feature (step 2). PCEs
bound to advice in this set are those that FRAGLIGHT will
later consider during the detection phase (described in §III-B2)
when predicting broken PCEs due to added JPSs. Thus, it
is these and only these PCEs that can possibly be included
in our change predictions. This helps control tractability by
allowing only a subset of PCEs to be analyzed. In our
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Fig. 2. Flowchart of the analysis phase that starts when a task is activated.

implementation (described in §IV-A), and later used during
our experiments (described in §IV-C, IV-D), the workspace
scope, which considers all PCEs available in all projects in a
developer’s workspace, is the default.

Example 2. If the aspect in Listing 2 was the only aspect in
all of the projects in the workspace, the PAS would include
the PCEs bound to the after () advice declared on line 2 and
the around() advice declared on line 5.

b) Concern Graphs: In step 3, an extended concern
graph is built from projects that include the aspects whose
advice-bound PCEs are in the PAS. A concern graph is a
directed multigraph depicting structural relations (e.g., calling,
declarations, package containment) between program elements
(e.g., types, methods, fields) [36]. We extended the graph with
relations and entity types found in modern Java languages.

Example 3. Vertices for Point, Point.y, and Point.getY() would
be in a graph built from Listing 1. Arcs would include Point
df−→ Point.y and Point

dm−−→ Point.getY()
gf−→ Point.y, where df ,

dm , and gf refer to field declaration, method declaration, and
field retrieval (“gets field”) relations, respectively.

c) Maximum Analysis Depth: A maximum analysis
depth (k) is also a parameter to control tractability. It controls
the depth of the structural relations considered. In §IV-B, we
discuss our choice for the analysis depth for our experiments.

d) Pattern Extraction: Next, each PCE in the PAS is
associated with the graph (step 4). This involves identifying
portions of the graph (vertices or arcs) that are related to the
JPSs selected by a PCE.

Example 4. Recall that the PCE declared on line 3 of Listing 2
selects executions of methods (and overriding methods via the
+ designator in Figure+) implementing the Figure interface
and whose name begins with “set,” etc. This PCE would be
associated with the vertices representing the methods Point.
setX() and Point.setTwiceX(). Graph elements (e.g., vertices)
that represent such methods are “enabled” w.r.t. a PCE [28].

Algorithmically, pattern extraction works by first enumerat-



ing acyclic, finite paths of maximum length k in the graph.

Example 5. A path of length one is Point.setX()
sf−→ Point.x,

where sf represents a field manipulation (“sets field”) relation.

Next, paths that contain enabled vertices or arcs are used to
construct patterns.

Example 6. The vertex Point.setX() in the path shown in Ex. 5
is enabled w.r.t. the PCE declared on line 3 in Listing 2.

Wild cards are then substituted for various graph elements
(either vertices or arcs), with the enabled graph elements being
substituted with “enabled wild cards” (step 5).

Example 7. We derive the pattern ?∗
sf−→ Point.x from the

PCE declared on line 3 in Listing 2 using the path depicted
in Ex. 5, where ?∗ is an enabled wild card3. Note that the
enablement is w.r.t. the PCE.

e) Pattern Matching: Pattern matching identifies paths
with common sources and sinks as those containing enabled
graph elements. Graph elements matching enabled wild cards
are those whose represented JPS exhibit similar structural
commonality with the JPSs selected by the PCE.

Example 8. The pattern in Ex. 7 would match (and only
match) the paths Point.setX()

sf−→ Point.x and Point.setTwiceX

()
sf−→ Point.x in Listing 1. Notice that the enabled wild

card ?∗ matches Point.setX() and Point.setTwiceX(), which
corresponds to all and only the selected JPSs. This indicates
that this pattern describes similar structural characteristics
as the PCE from which it was derived. Note, though, that
while the enabled wild card of the pattern Point

df−→ ?∗

also matches both Point.setX() and Point.setTwiceX(), it also
matches Point.getY(), whose corresponding JPS is not selected
by the PCE. This indicates that, while this pattern expresses
similar structural characteristics as the PCE, it is too broad.

We next detail how patterns and PCEs are compared.
f) Pattern Analysis: Step 6 is responsible for comparing

the derived patterns with the PCE (as demonstrated above) and
producing a pattern similarity metric, which quantifies how
closely the pattern resembles a PCE in terms of structural
properties related to selected JPSs. The closer a pattern’s
similarity is to 1 (its range is in [0, 1]), the more closely the
pattern matches similar structural commonality as that of the
PCE. The equation to calculate the pattern-PCE similarity is
depicted in equation (4) of Fig. 3.

Details of the pattern similarity metric are as follows. CG
refers to the extended concern graph built from the original
base-code when the Mylyn task is activated in step 3. In our
motivating example, this graph would represent the code in
Listing 1. Next, we define a function match(π̂,Π), where π̂
ranges over the set of patterns and Π the power set of paths in
CG . This function, given a pattern and a set of paths, matches
the pattern against the paths, resulting in a set of JPSs. These
are the JPSs whose corresponding program elements exhibit
the structural commonality represented by the pattern.

3Patterns of greater lengths may contain wild cards that are not enabled.

Equations (1), (2), and (3) are combined in the similarity
calculation to measure patterns on three dimensions. Equa-
tion (1) is the errα error rate attribute (cf. α discussed in
§III-A), which is akin to the ratio of the number of JPSs
selected by both the PCE and the pattern when matched against
finite, acyclic paths in the graph paths(CG) to the number
of JPSs solely selected by the pattern (|PCE | refers to the
number of JPSs selected by PCE ). It is subtracted from 1
to create an error ratio in the statistical sense. It quantifies
the pattern’s ability in matching solely the JPSs within the
PCE; the closer the errα rate is to 0 the more likely the JPSs
matched by the pattern are also ones within the PCE. If π̂ does
not match any JPSs, the errα is 0 as it is vacuously precise.

Example 9. The pattern depicted in Ex. 7 would have a small
(in fact, 0) errα w.r.t. the PCE declared on line 3 of Listing 2,
as both express exactly the same methods, namely, Point.setX
() and Point.setTwiceX(). On the other hand, the pattern Point
dm−−→ ?∗ would have a larger errα w.r.t. the PCE declared on

line 6 as the executions of Point.setX() and Point.setTwiceX
() would be matched by the pattern but not selected by the
PCE. Particularly, errα here would be 2

3 because, of the three
method executions matched by the pattern, only one of them
is also selected by the PCE (1− 1

3 ).

Equation (2) is the errβ error rate attribute, which is akin to
the ratio of the number of JPSs selected by both the PCE and
the pattern when applied to paths in the graph to the number of
JPSs selected solely by the PCE. Similar to errα, the quantity
is subtracted from 1 and its range is in [0, 1]. It quantifies
the pattern’s ability in matching all of the JPSs selected by
the PCE; the closer the errβ rate is to 0 the more likely the
pattern is to match all the JPSs selected by the PCE. If there
are no JPSs selected by the PCE, the errβ is vacuously 1 (any
pattern matches no JPSs).

Example 10. The pattern shown in Ex. 7 would have a small
(in fact, 0) errβ w.r.t. the PCE declared on line 3 of Listing 2,
as the pattern matches all of the methods selected by the PCE
(i.e., the pattern “covers” the PCE). However, the same pattern
would have a large (in fact, 1) errβ w.r.t. the PCE declared on
line 6 of Listing 2, as none of the method executions matched
by the pattern are selected by the PCE (i.e., it does not cover
the PCE).

Finally, equation (3) is the pattern abstractness (abbreviated
abs), i.e., the ratio of wild card to concrete elements. W(π̂)
projects the wild cards from a pattern π̂, with |W(π̂)| being the
number of wild cards in the pattern π̂ and |π̂| being the total
number of graph elements. An empty pattern has no concrete
elements, thus, it has an abs of 1. For instance, the pattern in
Ex. 7 has an abs of 1

3 .
We use abs because patterns containing many wild cards

are more likely to match a greater number of concrete graph
elements and vice versa. Thus, we combine the errα and
errβ rates by use of a weighted mean weighted by abs in
equation (4). The reason is that a pattern that is very abstract
is less likely to match JPSs that are only selected by a PCE.



errα(π̂,PCE ) =


0 if match(π̂, paths(CG)) = ∅

1− |PCE ∩match(π̂, paths(CG))|
|match(π̂, paths(CG))|

o.w.
(1)

errβ(π̂,PCE ) =


1 if PCE = ∅

1− |PCE ∩match(π̂, paths(CG))|
|PCE |

o.w.
(2)

abs(π̂) =


1 if |π̂|= 0

|W(π̂)|
|π̂|

o.w.
(3)

sim(π̂,PCE ) =1− [errα(π̂,PCE )(1− abs(π̂)) + errβ(π̂,PCE )abs(π̂)] (4)

sel(jps,PCE ) =

{
1 if jps ∈ PCE

0 o.w.
(5)

µ(jps) =
{
π̂
∣∣∣ jps ∈ match(π̂, paths(CG ′))

}
(6)

δ(PCE ) =
{
π̂
∣∣∣ π̂ was derived from PCE

}
(7)

chconf (jps,PCE ) =


sel(jps,PCE ) if µ(jps) ∩ δ(PCE ) = ∅

1

|µ(jps) ∩ δ(PCE )|
∑

π̂∈µ(jps)∩δ(PCE)

|sel(jps,PCE )− sim(π̂,PCE )| o.w. (8)

Fig. 3. PCE change confidence equation.

On the other hand, a pattern that is less abstract is less likely
to match all JPSs selected by a PCE [28].

Example 11. Let π̂ be the pattern from Ex. 7, PCE be the
PCE declared on line 3 of Listing 2, and CG be the graph
representing the base-code in Listing 1. Then, sim(π̂,PCE ) =

1− [(0)( 2
3 ) + (0)( 1

3 )] = 1. Let π̂ be Point
dm−−→ ?∗ and PCE

be the PCE declared on line 6. Then, sim(π̂,PCE ) = 1 −
[( 2

3 )( 2
3 ) + (0)( 1

3 )] = 5
9 .

Once the pattern similarity has been calculated, triples
corresponding to an analyzed advice, a pattern derived using
its bound PCE, and the pattern’s similarity to the PCE are
stored in memory (step 7) for later use in the (next) detection
phase. When all PCEs have been processed, the FRAGLIGHT
is registered as a Java Editor Change Listener [37] (step 8). In
this way, it becomes an “observer” of the editing pane where
the base-code developer writes code. This allows FRAGLIGHT
to observe keystrokes entered by the developer and detect
when a new JPS is added; we explain this in more detail in
the following section. Once a Mylyn task is deactivated, the
tool is de-registered as a listener.

2) Phase II: Detection: In the detection phase (Fig. 4),
FRAGLIGHT determines new JPSs when keystrokes are entered
by the developer in the IDE (step 1). For method execution
JPSs, it finds new method declarations using Eclipse [38],
which are the lowest level granularity whose addition informa-
tion is available by this framework. FRAGLIGHT then includes
its own code for JPSs residing within method bodies, e.g.,
method calls, adapting an AST differencing algorithm [39]. A
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Fig. 4. Flowchart depicting the detection phase that commences when a new
join point is added.

new JPSs that FRAGLIGHT would detect is shown in Ex. 1.
Triples related to analyzed advice (PCEs), patterns, and

similarity (calculated in the analysis phase) are retrieved in
step 2. Then, the graph (CG) is augmented with information
pertaining to the new base-code version using projects asso-
ciated with the retrieved advice (resulting in CG ′, step 3).

Example 12. Adding the move() method in Listing 3 would
result in new paths, e.g., Point

dm−−→ move(), move()
sf−→ Point

.x, move()
sf−→ Point.y, being added to CG , producing CG ′.

Next, for each retrieved advice, its bound PCE change
confidence (defined in equation (8)) value is calculated (step



4). First, we define a characteristic function sel in equation
(5) s.t. sel(jps,PCE ) = 1 if jps is selected by PCE and 0
otherwise. Recall that we treat a program as consisting of a
set of JPSs that may or may not be currently selected by a
PCE and treat a PCE as selecting a subset of these JPSs. As
such, a jps is selected by PCE iff jps ∈ PCE .
Example 13. Let jps = execution(void Point.move(double,
double)) and PCE be the PCE declared on line 3 of Listing 2.
Then, we have that sel(jps,PCE ) = 0 because, although
move is a method of a class implementing Figure, its name
does not begin with “set”. Let jps = execution(void Point.
setX(double)). Then, sel(jps,PCE ) = 1.

In equation (6), µ(jps) is the set of all patterns that match
jps when applied to the new base-code version CG ′.
Example 14. Let jps = execution(void Point.move(double,
double)), k = 1, and CG ′ be the graph representing the
combined base-code of Listings 1 and 3. Then, µ(jps) =

{?∗ sf−→ Point.x, ?∗
sf−→ Point.y,Point

dm−−→?∗ }.
In equation (7), δ(PCE ) is all patterns derived from PCE

(obtained from step 2 of Fig. 4).
Example 15. Let PCE be the PCE declared on line 3 of
Listing 2. Then, δ(PCE ) = {?∗ sf−→ Point.x,Point

dm−−→?∗ }.
Let PCE be the PCE declared on line 6. Then, δ(PCE ) =

{?∗ gf−→ Point.y,Point
dm−−→?∗ }.

Finally, Equation (8) depicts the PCE change confidence
equation, which produces a real number in [0, 1] that corre-
sponds to the confidence we have that PCE will need to be
changed (i.e., it breaks) due to adding jps to the base-code.
The closer the value is to 1, the more likely the PCE breaks
because of the new JPS and vice-versa.

We now discuss the individual cases within equation (8).
The case in which µ(jps) ∩ δ(PCE ) is non-empty implies
that there is at least one pattern s.t. it is derived from PCE
and it matches jps , which is part of the new base-code.
We consider the similarity of all such patterns to PCE . If
a pattern is very similar to the PCE in terms of matching
and selected JPSs, respectively, and jps is not selected by the
PCE, i.e., sel(jps,PCE ) = 0, then we are very confident that
PCE has broken as a result of adding jps . In this case, we
have that |sel(jps,PCE )− sim(π̂,PCE )| will be close to 1.
This situation corresponds to the top left (1) Venn diagram
in Fig. 1. Each of the other Venn diagrams correspond to
situations where the limits of sel and sim go to 0 and 1,
respectively. The equation is then the average of the values for
all patterns meeting the earlier stated criteria. If no patterns
meet this criterion, i.e., µ(jps)∩δ(PCE ) = ∅, then the change
confidence is simply whether or not the JPS is selected by the
PCE, i.e., sel(jps,PCE ). This is because there are no patterns
derived from the PCE that also match jps .

The reasoning behind equation (8) in Fig. 3 is as follows.
When µ(jps) ∩ δ(PCE ) = ∅, none of the patterns derived
from PCE , i.e., δ(PCE ), matches jps as a result of apply-
ing them to CG ′. In other words, jps shares no structural
commonality with JPSs selected by PCE . Being that our

hypothesis is that JPSs selected by a PCE typically share
significant structural commonality, and this JPS shares no
structural commonality with such JPSs, we suggest that jps not
be selected by PCE . Then, the confidence we have in PCE
breaking as a result of adding jps is just sel(jps,PCE ), i.e., 1
if jps is selected by PCE and 0 otherwise. In contrast, when
µ(jps) ∩ δ(PCE ) 6= ∅, there exists a pattern derived from
PCE that matches jps as a result of applying it to the new
base-code. Here, we average the chconf for all such patterns.

Example 16. Let jps = execution(void Point.move(double,
double)), PCE be the PCE declared on line 3 of Listing 2,
k = 1, and CG ′ be the graph representing the combined base-
code of Listings 1 and 3. Per Ex. 14 and 15, we have that

|µ(jps) ∩ δ(PCE )|= |{?∗ sf−→ Point.x,Point
dm−−→?∗ }|= 2

As such, we have that chconf (jps,PCE )

=
1

2

(
|sel(jps,PCE )− sim(?∗

sf−→ Point.x,PCE )|

+ |sel(jps,PCE )− sim(Point
dm−−→?∗ ,PCE )|

)
=

1

2

(
|0− 1|+ |0− 7

9
|
)

=
8

9
(per Ex. 11 and 13)

Let PCE be the PCE declared on line 6. Then,

|µ(jps) ∩ δ(PCE )|= |{Point dm−−→?∗ }|= 1

As such, we have that chconf (jps,PCE )

= |sel(jps,PCE )− sim(Point
dm−−→?∗ ,PCE )|

= |0− 5

9
| = 5

9
(per Ex. 11 and 13)

Notice that the chconf of the broken PCE (line 3) is greater
than the chconf of the unbroken PCE (line 6).

3) PCE Change Prediction: A PCE change prediction is
created for PCEs with change confidences either below a low
or above a high threshold (step 5). As a convenience, we add
additional information regarding the prediction depending on
whether the newly added JPS is currently selected by the
corresponding PCE. It is meant to guide the developer in
determining how a broken PCE should be fixed, i.e., whether
the new JPS should be removed from (a negative change
prediction) or added to (a positive change prediction) the PCE.

4) Mylyn DOI Model Manipulation: FRAGLIGHT manipu-
lates the Mylyn DOI model (step 6) using the low and high
confidence thresholds. If the PCE change confidence falls in
the low confidence interval, the PCE is made less “interesting”
in the DOI model, moving the developer’s attention away from
the PCE so that they may focus on the base-code. Conversely,
if the change confidence falls in the high interval, the PCE
is made more “interesting,” bringing the developer’s attention
towards the PCE, so that they may focus on PCEs that may
have broken as a result of their newly added base-code.

Example 17. Due to the small size of our example, let the low
chconf threshold be 0.6 and the high be 0.8. The scenario
described in Ex. 16 results in a positive change prediction for



the PCE declared on line 3 of Listing 2 as its chconf is above
the high threshold, thereby increasing the PCE’s DOI value.
Conversely, the PCE declared on line 6 has a chconf below the
low threshold, which results in a negative change prediction
and a decrease in its DOI value. As such, the broken PCE
receives a higher DOI value than the unbroken one.

IV. EXPERIMENTAL EVALUATION

A. Implementation

FRAGLIGHT is implemented as a relation provider exten-
sion to the standard Mylyn Eclipse plug-in. The extended
concern graph was constructed with the aid of the JayFX
fact extractor [36], which we extended for use with modern
Java languages and AspectJ (with the latter being as part
of our previous work [28]). JayFX generates “facts,” using
class hierarchical analysis (CHA) [40], pertaining to struc-
tural properties and relationships between program elements,
e.g., field accesses, method calls, in a particular project. Its
lightweight representation of program elements makes for
an efficient analysis. Source code and transitively referenced
libraries (possibly in binary format) are analyzed during graph
building.

The AJDT compiler was leveraged to conservatively (ex-
plained next) associate the graph with a PCE. For a given
PCE, the AJDT compiler produces the Java program elements,
e.g., method declarations, method calls, field sets, correlated
with selected JPSs. Both pattern extraction and pattern-path
matching were implemented via the Drools Rules Engine [41],
which uses a modified RETE algorithm [42]. Drools provides a
natural query language and an efficient solution to the many-
to-many matching problem. A prototype implementation of
FRAGLIGHT is publicly available [43].

B. Study Configuration

To assess the usefulness and effectiveness of our approach in
detecting broken (and unbroken) PCEs, we examined the final
DOI values of PCEs (as manipulated by only FRAGLIGHT)
after replaying a series of base-code changes from software
version histories. We assume that elements with a higher DOI
value, thereby being more prominent in the IDE, will be
more noticeable by developers and vice-versa. Note that an
assessment using a confusion matrix, precision, and recall do
not directly apply here as these notions are built in to the
DOI model [30,32]. That is, the DOI model is a scale; adding
weight to one elements removes it from another. It is very
much a sorting mechanism that strives to display the most
relevant IDE UI elements to the developer for a specific task.
As such, comparing the ratio of DOI values between broken
and unbroken PCEs suffices as an effective assessment.

Although a user study would be useful, we chose a soft-
ware evolution simulation using version histories for several
reasons. Firstly, user studies have a number of barriers [44].
Secondly, we desired to isolate the DOI manipulation that was
due to our tool and not by other UI interactions performed by
the developer. This way, we can ensure that we accurately as-
sess FRAGLIGHT’s change predictions. Thirdly, using version

histories provides an noninvasive, unbiased way to assess our
approach. Nevertheless, we consider a user study for future
work to enhance the results presented here.

With the initial DOI value of each PCE at 0, we say that a
successful DOI manipulation is one where broken PCEs had
a higher DOI value than those that did not break. In this case,
broken PCEs are brought to the developer’s attention, whereas
PCEs that did not break remain in the background. Note
that it is important to, during the experiments, not manually
manipulate the DOI, e.g., by manually clicking on any of
the IDE elements so that we can be sure that FRAGLIGHTś
predictions are solely responsible for these values. We visit
possible drawbacks of this approach in §IV-E.

For this experiment, we set k = 1 (see §III-B1c), which
keeps the tool run time short so that predictions can be made as
quickly as possible since the analysis runs while the developer
is typing. Moreover, we set the low and high confidence
thresholds parameters to 0.15 and 0.55, respectively, meaning
that PCEs assigned a chconf ≤ 0.15 resulted in a decreased
DOI, while ones of ≥ 0.55 resulted in an increase. We
empirically found that these thresholds worked the best with
our corpus. In the future, we plan to more thoroughly assess
trade-offs between analysis depth and prediction time, as well
as optimal threshold values.

Table I includes our subjects along with associated num-
ber of discrete releases (column vers.) analyzed, total non-
blank, non-commented lines of code (counted using SLOC-
Count [45]), which excludes code contained within aspect
files, between all versions (column LOC), ranging from an
average of ≈ 1.4K per version for MobilePhoto and ≈ 6K for
HealthWatcher, and total number of analyzed (advice-bound)
PCEs throughout versions (column aPCE). Subject source
code and other information can be found on our website [46],
as well as in the literature [47,48].

Column at (s) depicts the total PCE analysis time in secs
for all versions. Analysis occurs when the developer activates
a Mylyn task (normally at the start of working on a particular
bug or feature). Then, all PCEs in the PAS are analyzed. For
each version, the analysis was repeated three times, with the
results of each averaged, using a 2.83 GHz Intel machine. The
JVM heap size was 5 GB. The average was ≈ 1.05 secs per
KLOC and ≈ 0.14 secs per PCE, which indicates that the
analysis time is practical for even large applications.

Column JPS is the total number of JPSs added between
subject versions. These are the JPSs used as input, some of
which broke PCEs and others that did not. Since we collected
PCE statistics after inputting all JPSs added between versions
to our tool, is was not important to identify precisely which
JPSs caused particular PCEs to break. Instead, classifying
which PCEs broke and which did not was sufficient.

As noted in §III, the output of our tool is a PCE change
prediction, which, in turn, manipulates the Mylyn DOI. All of
this is done in the background as the developer is working.
We should note also that the predictions occur in a separate
thread, which fortunately does not interrupt the developer’s
workflow. However, having short prediction times (i.e., the



subject vers. LOC aPCE at (s) JPS pt (s) bPCE uPCE bDOI σbDOI uDOI σuDOI

HealthWatcher 8 47537 217 47.20 2648 1.1e4 6 29 1.17 0.98 0.21 0.77
MobilePhoto 6 8331 196 11.18 3063 3.5e3 29 58 2.21 2.54 1.14 1.78
Totals: 14 55868 413 58.39 5711 1.5e4 35 87 2.03a 2.37a 0.83a 1.58a

aArithmetic mean
TABLE I

EXPERIMENTAL RESULTS.

amount of time needed for FRAGLIGHT to generate a PCE
change prediction) is advantageous so that broken PCEs are
brought to the developer’s attention as early as possible.
Column pt (s) portrays the total prediction time in secs during
our experiment, which averaged ≈ 2.61 per added JPS. This
indicates that the developer would see programmatic changes
in the DOI made by FRAGLIGHT on average ≈ 2.61 secs
after adding a new JPS to the base-code, which is practical.
The remaining columns will be discussed shortly.

The order in which JPSs were used as input to our tool is
insignificant. This may be unintuitive as applying patterns to
different base-codes is likely to match different JPSs, however,
the only base-code we are interested in the patterns matching
is the JPS being added. As such, the order in which JPSs are
added to the old base-code version to obtain the new base-code
version is irrelevant as each JPS is considered in isolation.

Columns bPCE and uPCE are the total number of broken
and unbroken PCEs between versions, respectively. For this,
we use the conditions for a PCE to be considered broken
between subsequent base-code versions from [28]. We say that
a PCE in version vi broke in version vj where i < j iff:

1) the textual representation of the PCE in vi differs from
its textual representation in vj ,

2) the JPSs selected by the PCE in vj differs from the JPSs
selected by its old representation in vj .

Criterion 1 asserts that the PCE was rewritten between ver-
sions, i.e., they textually differ. Criterion 2 excludes situations
where the PCE selects the same JPSs between versions.

PCEs that meet these criteria are those that required textual
modification to allow the PCE to continue to capture intended
join points. We discuss possible drawbacks for using these
criteria to identify broken PCEs in version history in §IV-E.

C. Quantitative Analysis

After simulating the addition of JPSs between versions of
our subjects, we then collected the resulting PCE DOI values.
The hope is that broken PCEs resulted in a higher DOI value
than that of unbroken PCEs. In this case, broken PCEs would
appear more prominently in the IDE than unbroken PCEs, so
that developers can direct their attention to the problem early.
Columns bDOI and uDOI depict the average final DOI value
of broken and unbroken PCEs, respectively, while σbDOI and
σuDOI portray the corresponding standard deviations. These
columns show the average final PCE DOI values after adding
all the new JPSs between versions vi and vi+1 to vi for all
i = 1 . . . k − 1 where k is the number of subject versions.

From Table I, the average DOI value of PCEs that actually
broke are, on average, 2.5 times greater than the average DOI
value of PCEs that did not break. Recall that the resulting DOI
values are completely and only due to FRAGLIGHT’s manip-
ulation. These results indicate that FRAGLIGHT is promising
in bringing broken PCEs to the developers’ attention, while
hiding unbroken PCEs, all while they are typing. Particularly,
using our approach results in broken PCEs being 2.5 times
more prominently displayed in the IDE than unbroken PCEs.
Moreover, FRAGLIGHT presents its results to the developer in
a familiar way using existing, well-integrated IDE mechanisms
(i.e., Mylyn). Because of Mylyn, FRAGLIGHT’s results are
propagated throughout all UI elements where PCEs are visible,
making the results consistent among views.

D. Qualitative Analysis

We now analyze several situations where our tool performed
as expected and vice-versa. For succinctness, we draw exam-
ples from only the HealthWatcher subject. We begin with a
scenario where our tool assigned a high DOI to a PCE that
broke between versions. The aspect synchronizes a methods
in “record” types using a concurrency manager. The PCE
broke between versions 8 and 9 due to adding a new record
types (representing diseases and symptoms), which resulted
in the PCE selecting two additional join points. Adding these
new join points caused FRAGLIGHT to produce 2 predictions,
averaging a chconf = 0.67. One pattern that was used was one
matching accesses to a field. The JPSs added in the subsequent
version were methods that also accessed this field, and being
that they were not selected by the original PCE, FRAGLIGHT
increased the PCE’s DOI value to 2. The DOI value was not
higher because there is another method in an unrelated class
that also accesses this field but is not selected by the PCE.

We now discuss an instance where our tool assigned a low
DOI to a PCE that broke between versions. Changes made in
versions 1 to 2 involved introducing the Command pattern [49]
to replace the individual servlets that implemented each of
the operations provided by HealthWatcher. Consequently, a
PCE in an aspect responsible for computation distribution
broke. To rectify the problem, the PCE was rewritten to no
longer select join points contained in classes derived from a
particular servlet but instead to select join points contained
in classes derived from a servlet following the Command
pattern. Unfortunately, the final DOI value for this PCE was
0 as FRAGLIGHT produced no predictions for this PCE. The
reason was that all patterns that were derived from the PCE in
version 1 were invalidated by version 2. That is, the program



elements referred to in the structural patterns derived from the
PCE in the first version were no longer present in the second.
As such, applying the patterns from version 1 produced no
matches in version 2. Thus, no predictions were made, which
suggests that our approach may not be effective in situations
involving widespread, atomic refactorings. However, not all
refactoring (especially to patterns) can be fully automated in
an atomic fashion. We predict that our tool would perform well
in situations where the changes involve several intermediate
steps, which would provide FRAGLIGHT the opportunity to
match more existing patterns against old base-code.

Next, we turn to an instance where our tool assigned a low
DOI to a PCE that did not break between analyzed versions.
A PCE in a synchronization aspect did not break between any
subject versions. Furthermore, its final DOI value following
the experiment was 0. As previously discussed, HealthWatcher
was refactored to use the Command pattern between versions
1 and 2. However, this PCE selected join points not related
to this refactoring and thus did not break. Four predictions
were made between these versions, resulting in an average
chconf = 0.11. The derived patterns did not exhibit strong
structural commonality with that of the PCE as they expressed
calls to such common methods as String .equals(). Moreover,
the patterns did not match the added JPSs. This resulted in a
low PCE DOI value.

Finally, we detail a scenario where our tool assigned a high
DOI value to a PCE that did not break. One such instance oc-
curred with a PCE in an aspect responsible for catching excep-
tions raised inside Observer pattern [49] implementations and
displaying exception details in a web page. FRAGLIGHT pro-
duced 17 change predictions between all versions for the PCE,
resulting in an average chconf = 0.48. The final DOI value
for this PCE was 3. The PCE was execution(void Update∗
Data.executeCommand(..)), meaning that executeCommand()
methods declared in classes whose name starts with Update

and ends with Data are selected. One of the extracted
patterns matched calls to CommandRequest.isAuthorized(). An
added JPS in version 8, namely, the execution of the method
UpdateSymptomSearch.executeCommand(), includes a call to
CommandRequest.isAuthorized(), as such, it matches the pat-
tern. However, the PCE correctly selects base-code pertaining
to the Observer pattern (i.e., the Data is “observed”) and not
that of Searches. Since the CommandRequest.isAuthorized() is
called from within many of Data classes and that the new JPS
matched the pattern, this mislead our tool to suggest that the
PCE had broken.

E. Threats to Validity

Several threats may diminish our evaluation results. We
discuss here how their effects have been minimized. Our
evaluation aimed to simulate FRAGLIGHT’s performance in
a real-world setting. We drew data from multiple versions of
two projects, which may not be representative of AO projects
at large. However, these subjects have been extensively studied
previously in the literature. Moreover, they comprise publicly
available open source projects, which are contributed to by a

number of developers. Although only two projects were used,
they constitute fourteen versions with large deltas (a total of
5,711 added JPSs).

We assumed that all PCEs are correctly written between
version deltas, which correspond to major subject release
points. Our assumption is that, prior to a major release, all
PCEs select and only select intended join points. This is
essential in determining which PCEs broke and in which
versions. Moreover, we assumed that broken PCEs were fixed
by rewriting the PCE. Yet, there are other ways to “fix” a
broken PCE, namely, by changing the base-code to conform
to the PCE. For example, to fix the broken PCE portrayed
in §II, we could change the name of the move method to
setBothXandY.

It would be difficult to use base-code conformance as a
reliable means to determine broken PCEs as there are many
reasons that base-code can change, including fixing a broken
PCE. However, it is reasonable to assume that the only reason
PCEs change is because they are broken. Moreover, it is
reasonable to assume that the majority of PCEs are fixed by
altering the PCE itself.

When assessing the changes of DOI in our experiments, we
began the DOI flat, i.e., 0, and then fed a series of added JPSs
to the tool to obtain the subsequent version. No other factors
affected the DOI other than the programmatic manipulation
performed by FRAGLIGHT, which allowed us to focus on the
quality of its predictions. However, in a real-world setting, the
DOI may be affected by other events that occur within the
IDE, such as developer clicks and navigation. As such, more
investigation may be necessary to assess the effectiveness of
FRAGLIGHT’s programmatic DOI manipulation in combina-
tion with other events while the developer is typing, which
we plan for future work.

V. RELATED WORK

Wang et al. [50] automatically create analysis-based PCEs
[8] from traditional named-based ones, such as those in
AspectJ, which may avoid fragility issues. However, there is
no round trip support to convert these PCEs back in cases
where they do need to change.

Nguyen et al. [51] propose an approach geared towards
aspect mining, i.e., converting non-AO programs to AO ones,
which also works on maintaining existing AO systems. How-
ever, their approach is focused on incorporating missed JPSs
into PCEs, whereas our approach is for detecting broken PCEs,
either by inclusion or exclusion of JPSs, as the developer is
typing. Moreover, the results of our tool are incorporated into
an existing system (Mylyn) for focusing developer attention
on particular software elements.

Zhao [52] presents a change impact analysis for AOP. They
detail an “Advice Invocation Change” (AIC) that indicates
which PCEs are affected by new JPSs, but such an affect may
not be a PCE breakage. Conversely, a new JPS that does not
produce an AIC could also result in a broken PCE.



VI. CONCLUSION AND FUTURE WORK

We have detailed an approach that detects likely broken
PCEs due to the addition of a new JPS. We showed how
our approach works with the Eclipse editor, as well as its
integration features with the popular Mylyn plug-in, so that
these PCEs are brought to the base-code developer’s attention,
with likely unbroken PCEs moved to the background, in
a standardized, consistent way, all while the developer is
typing. Also, we showed, via an empirical evaluation, that our
approach is effective in bringing broken PCEs to light, with
such PCEs having DOI values that are, on average, 2.5 times
greater than the average DOI value of unbroken PCEs.

In the future, we plan to persist the patterns along with
the Mylyn context as to avoid rebuilding them if there are no
changes in the base-code between task activations. This may
have a performance impact in certain situations. Furthermore,
the analysis phase commences only when a Mylyn task is
activated, which occurs when a developer starts to work on
a particular bug or feature. We plan to further investigate the
optimal time to reanalyze the base-code.

REFERENCES

[1] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda,
C. Lopes, J. Loingtier, and J. Irwin, “Aspect oriented pro-
gramming,” in European Conference on Object-Oriented
Programming, 1997.

[2] G. C. Murphy, R. J. Walker, E. L. A. Baniassad, M. P.
Robillard, A. Lai, and M. A. Kersten, “Does aspect-
oriented programming work?” Commun. ACM, 2001.

[3] M. Kersten and G. C. Murphy, “Atlas: A case study in
building a web-based learning environment using aspect-
oriented programming,” in ACM SIGPLAN International
Conference on Object-Oriented Programming, Systems,
Languages, and Applications, 1999.

[4] M. Lippert and C. V. Lopes, “A study on exception detec-
tion and handling using aspect-oriented programming,” in
International Conference on Software Engineering, 2000.

[5] R. Walker, E. Baniassad, and G. Murphy, “An initial
assessment of aspect-oriented programming,” in Interna-
tional Conference on Software Engineering, 1999.

[6] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm,
and W. G. Griswold, “An Overview of AspectJ,” in
European Conference on Object-Oriented Programming,
2001.

[7] C. Koppen and M. Stoerzer, “PCDiff: Attacking the frag-
ile pointcut problem.” in Eur. Int. Workshop on Aspects
in Software, 2004.

[8] T. Aotani and H. Masuhara, “Scope: an aspectj compiler
for supporting user-defined analysis-based pointcuts,” in
International Conference on Aspect-Oriented Software
Development, 2007.

[9] K. Ostermann, M. Mezini, and C. Bockisch, “Expressive
Pointcuts for Increased Modularity,” in European Con-
ference on Object-Oriented Programming, 2005.

[10] W. Cazzola, S. Pini, and M. Ancona, “Design-Based
Pointcuts Robustness Against Software Evolution,” in

Workshop on Reflection, AOP, and Meta-Data for Soft-
ware Evolution, 2006.

[11] K. Sakurai and H. Masuhara, “Test-based pointcuts
for robust and fine-grained join point specification,” in
International Conference on Aspect-Oriented Software
Development, 2008.

[12] K. Klose and K. Ostermann, “Back to the Future:
Pointcuts as Predicates over Traces,” in International
Workshop on Foundations of Aspect-Oriented Languages,
2005.

[13] L. M. Seiter, “Role annotations and adaptive aspect
frameworks,” in International Workshop on Linking as-
pect technology and evolution, 2007.

[14] J. Aldrich, “Open Modules: Modular Reasoning About
Advice,” in European Conference on Object-Oriented
Programming, 2005.

[15] S. Gudmundson and G. Kiczales, “Addressing Practical
Software Development Issues in AspectJ with a Pointcut
Interface,” in Workshop on Advanced Separation of Con-
cerns at the ACM SIGPLAN International Conference on
Object-Oriented Programming, Systems, Languages, and
Applications, Oct. 2001.

[16] R. Khatchadourian, J. Dovland, and N. Soundarajan,
“Enforcing behavioral constraints in evolving aspect-
oriented programs,” in International Workshop on Foun-
dations of Aspect-Oriented Languages, 2008.

[17] W. G. Griswold, K. Sullivan, Y. Song, M. Shonle,
N. Tewari, Y. Cai, and H. Rajan, “Modular Software
Design with Crosscutting Interfaces,” IEEE Softw., 2006.

[18] K. Sullivan, W. G. Griswold, Y. Song, Y. Cai, M. Shonle,
N. Tewari, and H. Rajan, “Information hiding interfaces
for aspect-oriented design,” in ACM SIGSOFT Sympo-
sium on the Foundations of Software Engineering, 2005.

[19] M. Bagherzadeh, H. Rajan, G. T. Leavens, and
S. Mooney, “Translucid contracts: expressive specifica-
tion and modular verification for aspect-oriented inter-
faces,” in International Conference on Aspect-Oriented
Software Development, 2011.

[20] K. Hoffman and P. Eugster, “Bridging Java and AspectJ
through explicit join points,” in International Symposium
on Principles and Practice of Programming in Java,
2007.

[21] H. Rajan and G. Leavens, “Ptolemy: A Language with
Quantified, Typed Events,” in European Conference on
Object-Oriented Programming, 2008.
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