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In the previous chapters we develop the necessary mathematical apparatus and
presented the terminology that will be used throughout this course. It is now
time to open the door and introduce the basic concepts and tools of the quantum
theory to continue our study of quantum computing.

At the beginning of 1900 the classical physics dominate in the scene with
its double-pronged approach: particle and wave. Matter is considered to be
composed of macroscopic particles, and, in contrast, the light is thought of as
continuous electromagnetic waves propagating in space. The dichotomy - par-
ticle versus waves - was proven false by several groundbreaking experimental
discoveries. The photoelectric effect observed by Hertz in 1887 is the emission
of electrons when light falls on a material. According to classical electromag-
netic theory, this effect can be attributed to the transfer of energy from the
light to an electron. However, the classical electromagnetic theory fails to ex-
plain why the energy of emitted electron does not depend of the intensity of the
light. To make sense of the fact that light can eject electrons even if its intensity
is low, Albert Einstein proposed that a beam of light is not a wave propagating
through space, but rather a collection of discrete wave packets called later pho-
tons, each with energy hf . This shed light on Max Planck’s previous discovery
of the Planck relation E = hf linking energy E and frequency f via the factor
h is known as the Planck constant, arising from quantization of energy. French
physicist Louis De Broglie formulated hypothesis that predicts that a beam of
subatomic particle hitting the slit diffract following a wave-like pattern, entirety
similar to the diffraction pattern of the light itself. In 1927 George Thomson
passed a beam of electrons through a thin metal film and observed the predicted
interference patterns. Independently around the same time Davisson and Ger-
mer guided their beam through a crystalline grid and observed the interference
patterns for electrons. Therefore experimentally it was confirmed that particle
diffract following a wave-like pattern. Further experimental evidence from many
quarters accumulated over time strongly suggesting that classical particle and
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wave approach must be replaced by a new theory of the microscopic world in
which both matter and light manifest a new particle-like and wave-like behavior.
Time was ripe for the conceptual framework of quantum mechanics.

Let us formulate the main postulates of quantum mechanics.
1) Microscopic system can be described by the wave function or state func-

tion Ψ(r,t). The physical meaning has |Ψ(r,t)|2, which is the probability of the

state and |Ψ(r,t)|2 is integrable function. The wave function Ψ(r,t) is
i) generally a complex function;
ii) continues function;
iii) differentiable function;
iv) the derivative of the wave function is the continue function.
An arbitrary quantum state Ψ(r,t) we denote using Dirac notation as |ψ〉 .
2) Principle of superposition.
If he quantum system can be in the state Ψ1(r,t) and in state Ψ2(r,t) than

means the system can be in the state Ψ(r,t) = c1Ψ1(r,t) + c2Ψ2(r,t), where
c1 and c2 are any complex numbers known as a complex amplitudes. In Dirac
notations |ψ〉 = c1 |ψ〉+c2 |ψ〉 . The latter means that the state Ψ(r,t) is the lin-
ear combination of the the states Ψ1(r,t) and Ψ2(r,t). Moreover, from principle
of superposition it is follow that state function Ψ1(r,t) must satisfy the linear
equation.

3) To each physical quantity corresponds the operator: A→ Â. The average
value of the operator is the physical value that can be measured experimentally.
Therefore this value must be real.

〈A〉 =

∫
Ψ∗ÂΨdrdt ≡ 〈ψ| Â |ψ〉 . (1)

From postulate Average Value immediately follows that operator Â should
be the Hermitian operator: 〈ψ| Â |ψ〉 = 〈ψ| Â† |ψ〉.

4) When the operator Â acts on the state function Ψ it transforms this

state to a new state Ψ
′

so that Ψ
′

= ÂΨ. The following two conditions must
be satisfied to keep the principle of superposition: ÂcΨ = cÂΨ and ÂΨ =
Âc1Ψ1 + Âc2Ψ2 for any complex numbers c, c1, and c2.

By introducing a computation basis 2n ket vectors as

|x0〉 =
[

1 0 ... 0
]T

(2)

|x1〉 =
[

0 1 ... 0
]T

(3)

...

|xn−1〉 =
[

0 0 ... 1
]T

based on the principle of superposition an arbitrary state |ψ〉 can be pre-
sented in this basis as

|ψ〉 = c0 |x0〉+ c1 |x1〉+ ...cn−1 |xn−1〉 . (4)
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Figure 1: (Color online) The schematics of the Stern-Gerlach experiment.

where c0, c1, ...cn−1 are the amplitude of the states. Thus, we say that the
state |ψ〉 is a superposition of the basis states and represents the particle as
being simultaneously in all states |x0〉 , |x1〉 , ... |xn−1〉 . The complex numbers
c0, c1, ...cn−1 tell us precisely which superposition the particle is currently in.
The norm square of the complex number ci, |ci|2 , gives the probability that
after observing the particle, it will be detected in state |xi〉 Thus , every state
of the system can be represented by an elements of complex Cn as

|ψ〉 7−→
[
c0, c1, ... cn−1

]T
. (5)

Let us now introduce the property of subatomic system called spin. As it
turns out, spin will play a major role in quantum computing because it is a pro-
totypical way to implement quantum bit or qubit. What is spin? Two types of
experimental evidence which arose in the 1920s suggested an additional property
of the electron. One was the closely spaced splitting of the hydrogen spectral
lines, called fine structure. The other was the Stern-Gerlach experiment which
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showed in 1922 that a beam of silver atoms directed through a nonhomogeneous
magnetic field would be forced into two beams and observed their deflection.
Both of these experimental situations were consistent with the possession of an
intrinsic angular momentum and a magnetic moment by individual electrons.
Classically this could occur if the electron were a spinning ball of charge, and
this property was called electron spin. The results show that particles possess
an intrinsic angular momentum that is closely analogous to the angular mo-
mentum of a classically spinning object, but that takes only certain quantized
values. If we consider the beam of electrons which goes through a nonhome-
geneous magnetic field oriented in certain direction it happens that the field
splits the beam into two streams with opposite spins. Certain electrons will be
found spinning in one way and certain others the opposite way. With respect of
classical spinning top there are two striking differences. First, the electron has
no any internal structure and just a charged point particle. It acts as a spinning
top but it is no top. Therefore, spin is a new property of the electron with no
classical analog. Secondly, which is quite surprisingly, electrons can be found
in either in the top of the screen or at the bottom, none between. We did not
prepared the ”spinning” electrons in any way before letting them interact with
magnetic field. The latter means that this property electron has by itself.

For each given direction in space there are only two basic spin states. For the
vertical axis, these states have name: spin up |↑〉 and spin down |↓〉 . Therefore
the generic state will then be a superposition of up and down states

|ψ〉 = c0 |↑〉+ c1 |↓〉 . (6)

In this expression c0 is the amplitude of finding the particle in the spin up state
and similarly c2 is the amplitude of finding the particle in the spin down state.

We introduce the inner product as an abstract mathematical idea. The
physical meaning of the inner product is the following: the inner product of
the state space gives us a tool to compute a transition amplitude, that are the
complex numbers, which in turn will enable to determine how likely the state of
the system before the specific measurement (initial state) will change to another
state (final state), after measurement has been carried out. Graphically we can
present the inner product as it is shown below

〈ψ |φ〉
|ψ〉 |φ〉

Let say in the initial state system is described by Eq. (4) which is expressed
in the basis {|x0〉 , |x1〉 , ... |xn−1〉} . It is easy to show that the inner product of

|xi〉 and |ψ〉 is ci = 〈xi |ψ〉 and that |c0|2 + |c1|2 + |c2|2 + ...+ |cn−1|2 = 1. Thus

it is obvious to read Eq. (4) in the following way: each |ci|2 is a probability of
transition from the initial state |ψ〉 to the final state |xi〉 .
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|ψ〉

〈x0 |ψ〉

〈x1 |ψ〉

〈xn−2 |ψ〉

〈xn−1 |ψ〉

|x0〉
|x1〉
.
.
.

|xn−2〉
|xn−1〉


2n,

We introduce the tensor product as an abstract mathematical idea as well
and now let us provide the physical meaning of the tensor product. For this pur-
pose we consider the system of two particles one in basis {|x0〉 , |x1〉 , ... |xn−1〉}
and the other in basis {|y0〉 , |y1〉 , ... |ym−1〉} . Let us find the way of assem-
bling more complex quantum system staring from simpler ones. This procedure
lies in very core of modern quantum physics and enable to model multiparti-
cle quantum system. First, let introduce the definition. Assume we have two
independent quantum system Q1 and Q2 represented by the Hilbert spaces H1

and H2, respectively. The quantum system Q obtained by merging Q1 and Q2

will have a state space H, which is defined by the tensor product H = H1⊗H2.
Therefore, one can build the assemble of two particles. If n = 2 and m = 2
we have {|x0〉 , |x1〉} and {|y0〉 , |y1〉} and we deal with the state space C4 with
basis

{|x0〉 ⊗ |y0〉 , |x0〉 ⊗ |y1〉 , |x1〉 ⊗ |y0〉 , |x1〉 ⊗ |y1〉} . (7)

Let us consider the state vector for the two particle system in this basis

|ψ〉 = i |x0〉 ⊗ |y0〉+ (1− i) |x0〉 ⊗ |y1〉+ 2 |x1〉 ⊗ |y0〉+ (−1− i) |x1〉 ⊗ |y1〉 . (8)

The norm of this state vector can be calculated using the corresponding
amplitude: ||ψ〉|2 = |i|2 + |1− i|2 + |2|2 + |−1− i|2 = 1 + 2 + 4 + 2 = 9. Now
let’s determine the probability to find two particles one in the state |x1〉 and

the other in the state |y1〉 ,which is |−1−i|
2

||ψ〉|2 = 2
9 = 0.2222, while the probability

to find two particles one in the state |x0〉 and the other in the state |y0〉 is
|2|2

||ψ〉|2 = 4
9 = 0.4444. The same machinery can be applied to any quantum

system. This approach enable to us to assemble as many system as we like,
because the tensor product of vector space is associate, so we can progressively
build larger and larger systems. Finally, we can conclude that the physical
meaning of the tensor product is ability assembling the quantum system.

Now we are ready to introduce the puzzling surprise of quantum mechanics:
entanglement. The basic state of the assembled system is just a tensor product of
the basic states of its constituents. However, not always each generic state vector
can be rewritten a the tensor product of two states, one coming from the first
quantum subsystem and the other one from the second quantum system. We will
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illustrate this using the following example. The state |ψ〉 = |x0〉⊗|y0〉+|x1〉⊗|y1〉
can be rewritten as |ψ〉 = 1 |x0〉⊗|y0〉+0 |x0〉⊗|y1〉+0 |x1〉⊗|y0〉+1 |x1〉⊗|y1〉 .
Let us see if this state comes from most general representation of the first particle
state |φ1〉 = c0 |x0〉+c1 |x1〉 and the second particle state |φ2〉 = d0 |y0〉+d1 |y1〉 .
Does the state |ψ〉 came from the tensor product |ψ〉 = |φ1〉 ⊗ |φ2〉? Let’s see

|ψ〉 = (c0 |x0〉+ c1 |x1〉)⊗ (d0 |y0〉+ d1 |y1〉) =

c0d0 |x0〉 ⊗ |y0〉+ c0d1 |x0〉 ⊗ |y1〉+

c1d0 |x1〉 ⊗ |y0〉+ c1d1 |x1〉 ⊗ |y1〉 . (9)

To obtain our state c0d0 = 1, c0d1 = 0, c1d0 = 0, and c1d1 = 1. However,
this equations have no solutions at all and we can conclude that |ψ〉 cannot be
rewritten as a tensor product. Let us understand what this physically means.
The state |ψ〉 = |x0〉⊗|y0〉+|x1〉⊗|y1〉 means that the first particle can be in the
state |x0〉 or |x1〉 with the 50-50 chance. However, because the term |x0〉 ⊗ |y1〉
has a 0 coefficient there is no chance to find the second particle in state |y1〉 .
Therefore we must conclude that the second particle is in the state |y0〉 . The
same logic is applicable for the states |x1〉 and |y1〉 for the first and second
particle. Thus the individual states of two particle are intimately related to one
other or one can say the states are entangled. The amazing site of the entangled
state is that regardless of the actual distance in space a measurement’s outcome
for one particle will always determine the measurement’s outcome of the other
one. We can conclude with the following definition: states that can be broken
into the tensor product of states from the constituent subsystem are referred
to as separable states, whereas states that are unbreakable are called entangled
states.

1 Homework

1. Find the probability of the state |↑〉 and |↓〉

|ψ〉 = (1− 2i) |↑〉+ 3i |↓〉 . (10)

2. Find the probability of each state

|ψ〉 = 3i |x0〉⊗|y0〉+(1−2i) |x0〉⊗|y1〉+3 |x1〉⊗|y0〉+(−1+i) |x1〉⊗|y1〉 . (11)

|ψ〉 = 2i |x0〉 ⊗ |y0〉+ (−1 + 2i) |x1〉 ⊗ |y1〉 . (12)
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