
Dirac notations

Roman Ya. Kezerashvili

February 13, 2019

0.1 Dirac Vectors

A notation invented by Dirac which is very useful in quantum mechanics and
widely used in quantum computing. Let us consider a particular microscopic
system in a particular state. We can represent this state as a particular vector,
which we also label, residing in some vector space, where the other elements of
the space represent all of the other possible states of the system. Such a space
is called a ket space (after Dirac). In the Dirac notation, the symbol identifying
a vector is written inside a ’ket’ and the state vector is conventionally looks like
|A〉 .Thus, ket vectors differ from conventional vectors in that their magnitudes,
or lengths, are physically irrelevant. All the states of the system are in one to
one correspondence with all the possible directions of vectors in the ket space,
no distinction being made between the directions of the ket vectors |A〉 and
− |A〉 .

The dimensionality of a conventional vector space is defined as the number
of independent vectors contained in the space. Likewise, the dimensionality of
a ket space is equivalent to the number of independent ket vectors it contains.
If there are N independent states, then the possible states of the system are
represented as an Ndimensional ket space. Some microscopic systems have a
denumerably infinite number of independent states. The possible states of such
a system are represented as a ket space whose dimensions are denumerably
infinite. Such a space can be treated in more or less the same manner as a
finite-dimensional space. Unfortunately, some microscopic systems have a non-
denumerably infinite number of independent states. The possible states of such
a system are represented as a ket space whose dimensions are nondenumerably
infinite. This type of space requires a slightly different treatment to spaces of
finite, or denumerably infinite, dimensions.

The states of a general microscopic system can be represented as a complex
vector space of infinite dimensions. Such a space is termed a Hilbert space. The
Hilbert space of interest for quantum computing will typically has dimensions
2n, for some positive integer n.

Below are presented the main properties linear algebra object of interest,
using the Dirac notation. Since the Hilbert 2n space used in quantum computing
is finite-dimensional we can alternatively present ket vectors as finite column
vectors, and represent operators with finite matrices. The standard way to
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associate column vectors to the ket vectors is as follows

|A >︸ ︷︷ ︸
ket

=


a
b
c
.
.
.




column vector (1)

In quantum computing it is convinient to have fixed computational basis.
In this basis 2n ket vectors and corresponding matrix representation using the
binary strings of length n are as follows:

∣∣∣∣∣∣00 . . . 00︸ ︷︷ ︸
n

〉
=



1
0
.
.
.
0
0




2n,

∣∣∣∣∣∣00 . . . 01︸ ︷︷ ︸
n

〉
=



0
1
.
.
.
0
0




2n ...

∣∣∣∣∣∣11 . . . 10︸ ︷︷ ︸
n

〉
=



0
0
.
.
.
1
0


∣∣∣∣∣∣11 . . . 11︸ ︷︷ ︸

n

〉
=



0
0
.
.
.
0
1




2n

For example, |0〉 =

[
1
0

]
and |1〉 =

[
0
1

]
In 2n Hilbert space any arbitorary ket vector can be written as a weighted

sum of above basic vectors using the Dirac notation as well as a single column
matrix. However the Dirac notation have some advantages. The Dirac notation
are very compact and often preferred because of its elegance. In the Dirac
notation we represent a 2n-dimentional vector by a binary string of lenght n,
but the column vector representation would have 2n components.

To each ket vector |A〉, there corresponds a dual or adjoint quantity called by
Dirac a ’bra’ and it conventionally looks like 〈A|. It is not a ket– rather it exists
in a totally different space and bra vectors are quite different in nature to ket
vectors (hence, these vectors are written in mirror image notation, and , so that
they can never be confused). Bra space is an example of what mathematicians
call a dual vector space -it is dual to the original ket space. There is a one
to one correspondence between the elements of the ket space and those of the
related bra space. So, for every element of the ket space, there is a corresponding
element in the bra space.This is
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|A〉 DC⇐⇒ 〈A| (2)

where DC stands for dual correspondence. In terms of matrix representation
〈A| is obtained from |A〉 by taking the corresponding row matrix, and then
taking the complex conjugate of every element. This procedure is known as the
’Hermitean conjugate’. Therefore,

〈A| = a∗ b∗ c∗ . . . (3)

Dual to c |A〉 is c∗ 〈A| , where is a complex number. More generally,

c1 |A〉+ c2 |B〉
DC⇐⇒ c∗1 〈A|+ c∗2 〈B| (4)

Recall from linear algebra the definition of scalar product of a vector v
with vector w as 〈v,w〉 .The scalar product of these vectors has the following
properties:

1. Linearity

< v,
∑
i=0

λiwi >=
∑
i=0

λi < v,wi > .

<
∑
i=0

λivi,w >=
∑
i=0

λ∗i < vi,w > .

2. Conjugavite-commutativity

< v,w >=< w,v >∗

where * denotes complex conjugation.

3. Non-negativity

< v,v > > 0

with equility < v,v >= 0 if and only if v = 0.

An example of an inner product is the dot product of column vectors and is
defined as
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v ·w =



v1
v2
.
.
.

vn−1
vn


·



w1

w2

.

.

.
wn−1
wn


(5)

=
(
v∗1 v∗2 . . . v∗n−1 v∗n

)


w1

w2

.

.

.
wn−1
wn


=

n∑
i=1

v∗iwi (6)

The generalized scalar product is defined in analogy with the ordinary scalar
product that you are familiar with as a combination of a bra and a ket to form a
bracket - the generalized scalar product is simply a complex number associated
with a pair of kets. The inner product of the vecror |A〉 ∈ H with the vector
|B〉 ∈ H is defined as

〈A|B〉 = c (7)

where c a complex number. The inner product of |A〉 with |B〉 in the ma-
trix representation is computed as the single element of the matrix product
representing 〈A| with the column matrix representing |B〉 , which is equivalent
to taking the dot product of the column vector associated with |A〉 with the
column vector associated with |B〉 .The inner product is linear

〈A| (c1 |B1〉+ c2 |B2〉) = c1〈A |B1〉+ c2〈A |B2〉 . (8)

Orthogonality
We say that |A〉 and |B〉 are orthogonal if

〈A|B〉 = 0. (9)

The Euclidean norm of the vector |A〉 is denoted as ||A〉|and defined as a
square root of the inner product of |A〉 with itself:

|||A〉|| =
√
〈A|A〉. (10)

The state called normalized if

〈A|A〉 = 1, (11)
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and two states |A〉 and |B〉 are orthonormal if

〈A|B〉 = δAB , (12)

where δAB is the Kronecker symbol.

Let’s say that a set of 2n vectors {|an〉} ⊆ H forms the orthonormal basis
for H. Thus, 〈an| am〉 = δnm. Every vector |B〉 from Hilbert space |B〉 ∈ H may
be expanded in terms of this orthonormal basis as

|B〉 =

n∑
i=1

bi |ai〉 . (13)

The coefficients bi = 〈B| ai〉 are determined with respect to basis {|an〉} .From
this equation it is easy to show that the square of the norm of vector |B〉 with
respect of the orthonormal basis {|an〉} is

|||B〉||2 =

n∑
i=1

|bi|2 . (14)

There is very important result that if 2n vectors {|an〉} ⊆ H form the or-
thonormal basis for H then {〈an|} is an orthonormal basis for H∗.

0.2 Operators

Having discussed |〉 kets , 〈| bras , and 〈| 〉 bra-ket pairs, it is now appropriate to
study projection operators which are |〉 〈| ket-bra products. Recall from linear
algebra, a linear operator on a vector space is a linear transformation which
maps vectors in H to vector in H. Let’s consider an outer product of ket and
bra vectors: |A〉 〈A| . The meaning of such outer product is that operating
on the state vector |B〉 as |A〉 〈A|B〉 this operation reveals the contribution
of |A〉 to |B〉. In other words this operator projects a vector |B〉 in H to the
dimensional subspace of H spanned by |A〉 .The outer product of the vector
|A〉 with itself |A〉 〈A| is called an orthogonal projector. More general the outer
product |A〉 〈D| which applied to |B〉, acts as follows:

(|A〉 〈D|) |B〉 = |A〉 〈D|B〉 = 〈D|B〉 |A〉 (15)

Let’s define the operator that are very imprtant for discription of quantum
system. Operators are denoted by a hat T̂ . The operator T̂ is a linear operator
if

T̂ (cc |A〉+ c2 |B〉) = c1T̂ |A〉+ c2T̂ |B〉 . (16)

The matrix element of an operator is

〈A| T̂ |B〉 = 〈A| (T̂ |B〉) = .(〈A| T̂ ) |B〉) = c (a number). (17)
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The expectation value of an operator
ˆ

T for a system in state |A〉 is〈
T̂
〉

= 〈A| T̂ |A〉 = c (a number). (18)

Any linear operator difined in H can be presented as

T̂ = .

n∑
i, j=1

Tij |bi〉 〈bj | . (19)

where Tij = 〈bi|
ˆ

T |bj〉 are the matrix element and {|bn〉} is an orthonormal
basis for 2n vector space H. In other words the linear operator can be presented
as all the possible outer products of the pair basis vectors |bi〉 〈bj |. In terms of

matrix representation of operator
ˆ

T , Tij is the matrix element in the ith row

and jth column. The action of the operator
ˆ

T on the vector |A〉 is

T̂ |A〉 = .

n∑
i, j=1

Tij |bi〉 〈bj |A〉 =

n∑
i, j=1

Tij 〈bj |A〉 |bi〉 . (20)

In quantum physics we have deal with Hermitean operators. Suppose
ˆ

T is

an operator on H. The hermitean or adjoint operator of
ˆ

T denoted
ˆ

T † is
defined as that linear operator on H∗ that satisfies the following condition:(

〈A|
ˆ

T † |B〉

)∗
= 〈B|

ˆ

T |A〉 (21)

When
ˆ

T is represented by a matrix the Hermitian conjugate is found by
transposing the matrix and then taking the complex conjugate of each matrix
element. The operation of taking the Hermitian conjugate of a combination of
numbers, states, and operators involves changing c→ c∗, |A〉 → 〈A| , 〈A| → |A〉 ,
ˆ

T →
ˆ

T † and reversing the order of all elements. For example,(
c

ˆ

P † 〈A|
ˆ

T |B〉 〈D|

)†

= c∗ |D〉 〈B|
ˆ

T † |A〉
ˆ

P . (22)

An operator U−1 is the inverse operator of U if U−1U = I, where I is the

identity operator. An operator
ˆ

U is unitary if
ˆ

U† =
ˆ

U−1. Note that
ˆ

U†
ˆ

U =
ˆ

I .

Observables in quantum mechanics are represented by Hermitian operators

which satisfy
ˆ

T =
ˆ

T †.The expectation value of a Hermitian operator is real:
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〈
T̂
〉∗

=
(
〈A| T̂ |A〉

)∗
=
(
〈A| T̂ † |A〉

)
= 〈A| T̂ |A〉 =

〈
T̂
〉

(23)

A vector |A〉 is an eigenvector of an operator
ˆ

T if

T̂ |A〉 = c |A〉 . (24)

In Equation ( ) c is a constant and is called the eigenvalue of T corresponding
to eigenvector |A〉 .It is easy to prove that the eigenvalues of a Hermitean
operator are real.

T̂ |A〉 = c |A〉 . (25)

T̂ † |A〉 = c∗ |A〉 (26)

Therefore, we have that
ˆ

(T̂ † − T )† |A〉 = (c− c∗) |A〉 = 0. thus, c = c∗.
Another famous theorem: eigenvectors of the same Hermitian operator hav-

ing different eigenvalues are automatically orthogonal. Denote the eigenstates
of a Hermitian operator by |n〉. Let’s show that states corresponding to different
eigenvalues are orthogonal.

We assume the states are normalized so that 〈m |n〉= δmn. Suppose that

Â |n〉 = an |n〉 . To prove orthogonality we calculate

〈m| Â |n〉 = 〈m| an |n〉 = an 〈m|n〉 (27)

and

〈m| Â |n〉 = (

ˆ

A
†
|m〉)

†

|n〉 = (am |m〉)
†

|n〉 = a∗m 〈m|n〉 = am 〈m|n〉. (28)

Thus,

(an − am) 〈m|n〉 = 0 (29)

so 〈m|n〉 = 0 if m = n.
The eigenstates of a Hermitian operator form a complete set. Therefore for

an arbitrary vector |A〉

|A〉 =

n∑
n=1

an |n〉 , (30)

where

an = 〈n |A〉 = 〈n|
n∑

m=1

an |m〉 =

n∑
m=1

an〈n |m〉 =

n∑
m=1

anδnm = an. (31)
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|A〉 = .

n∑
n=1

an |n〉 =

n∑
n=1

〈n |A〉 |n〉 =

n∑
n=1

|n〉 〈n |A〉 =

(
n∑

n=1

|n〉 〈n|

)
|A〉 (32)

Since this is true for arbitrary |A〉 we can write the identity operator as

ˆ

I =

n∑
n=1

|n〉 〈n| . (33)

A component of |A〉 can be found by operating with the projection operator
ˆ

Pn = |n〉 〈n| . We have

ˆ

Pn |A〉 = . |n〉 〈n|
n∑

m=1

am |m〉 = |n〉
n∑

m=1

am〈n |m〉 = an |n〉 . (34)

The projection operator is idempotent:

(
ˆ

Pn

)2

= .
ˆ

Pn

ˆ

Pn = (|n〉 〈n|)(|n〉 〈n|)= |n〉 (〈n|n〉) 〈n| = |n〉 〈n| =
ˆ

Pn. (35)

The inner product of two states can be expressed in terms of the coefficients
of their decomposition. We write |A〉 = .

∑n
n=1 an |n〉 and |B〉 = .

∑n
n=1 bn |n〉 .

Then

〈B |A〉 = .

n∑
m=1

b∗m 〈m|
n∑

n=1

an |n〉 =

n∑
m=1

n∑
n=1

b∗man〈m |n〉 =

n∑
m=1

n∑
n=1

b∗manδmn =

n∑
n=1

b∗nan

(36)
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1 Examples

The example given in the text shows that:

√
2

3
|01 > +

i√
3
|11 >=

√
2

3
|0 >

⊗
|1 > +

i√
3
|1 >

⊗
|1 >

It appears that the 2 single digit kets can be combined together to be
rewritten as a single 2-digit ket.

|n1 >
⊗
|n2 >= |n1n2 >

And the two digit kets (N=2) can be represented in matrix form as 4
dimensional column vectors (2N=2 = 22 = 4).
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Example goes over the sum of two 4-dimensional vectors:

√
2

3
|01〉+

i√
3
|11〉 =

√
2

3


0
1
0
0

+
i√
3


0
0
0
1

 =


0√
2
3

0
i√
3


The evaluation of the dot/inner product of column vectors w and v follows:

v ·w =



v1
v2
.
.
.

vn−1
vn


·



w1

w2

.

.

.
wn−1
wn


(37)

=
(
v∗1 v∗2 . . . v∗n−1 v∗n

)


w1

w2

.

.

.
wn−1
wn


(38)

=

n∑
i=1

v∗iwi (39)

(40)

The example given in the text
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0√
2
3

0
i√
3

 ·


0
0√
1
2√
1
2

 =
(

0
√

2
3 0 −i√

3

)


0
0√
1
2√
1
2

 (41)

= 0 · 0 +

√
2

3
· 0 + 0 ·

√
1

2
+
−i√

3
·
√

1

2
(42)

=
−i√

3
·
√

1

2
(43)

0√
2
3

0
i√
3

 ·


0
0√
1
2√
1
2

 =
−i√

6
(44)

When performing the inner products of vectors of Hilbert space
(< χ| ∈ H∗ : |ψ > and |ψ >∈ H):

< χ| : |ψ >→< χ|ψ >∈ C

With the |ψ >∈ H, the dual of which is, < ψ| ∈ H∗: The norm is defined as:

||ψ > || =
√
< ψ|ψ >

Now, let’s say that within H space, we were able to find orthonormal vectors
bn such that they span all space of the H.

< bn|bm >= δn,m

where
∀bm, bn ∈ B

So, basically, |ψ > can be rewritten with orthonormal bases.

|ψ >=
∑
bn∈B

ψn|bn >

with ψn =< bn|ψ >

The example given in the previous page can be performed in Dirac notation.
With more elegance, it appears to be more easily done:
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< ψ|φ > =

(√
2

3
〈01|+ −i√

3
〈11|

)(√
1

2
|10〉+

√
1

2
|11〉

)
(45)

= (

√
2

3
)(

√
1

2
)< 01|10 >︸ ︷︷ ︸

0

+(

√
2

3
)(

√
1

2
)< 01|11 >︸ ︷︷ ︸

0

(46)

+(
−i√

3
)(

√
1

2
)< 11|10 >︸ ︷︷ ︸

0

+(
−i√

3
)(

√
1

2
)< 11|11 >︸ ︷︷ ︸

1

(47)

< ψ|φ > =
−i√

6
(48)

Hadamard basis |+ > and|− >, defined as:

|+ > =
1√
2

(|0 > +|1 >) (49)

|− > =
1√
2

(|0 > −|1 >) (50)

The inner product of the two:

< +|− > =
1√
2

(< 0|+ < 1|) 1√
2

(|0 > −|1 >) (51)

=
1

2

< 0|0 >︸ ︷︷ ︸
1

−< 0|1 >︸ ︷︷ ︸
0

+< 1|0 >︸ ︷︷ ︸
0

−< 1|1 >︸ ︷︷ ︸
1

 (52)

= 0 (53)

The above states that the two Hadamard bases are orthogonal from each other.

Let’s try evaluating this in column matrix form to see if they agree with the
above:

< +|− > =
1

2
(< 0|+ < 1|) (|0 > −|1 >) (54)

=
1

2

(
1
1

)
·
(

1
−1

)
(55)

=
1

2

(
1 1

)( 1
−1

)
(56)

=
1

2
(1 · 1 + 1 · −1) (57)

< +|− > = 0 (58)
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The norm of the 1st Hadarmard basis |+ >:

|||+ > ||2 = < +|+ > (59)

=
1

2
(< 0|+ < 1|) (|0 > +|1 >) (60)

=
1

2

(
1
1

)
·
(

1
1

)
(61)

=
1

2

(
1 1

)( 1
1

)
(62)

=
1

2
(1 · 1 + 1 · 1) (63)

|||+ > ||2 = 1 (64)

The norm of the 2nd Hadarmard basis |− >:

|||− > ||2 = < −|− > (65)

=
1

2
(< 0|− < 1|) (|0 > −|1 >) (66)

=
1

2

(
1
−1

)
·
(

1
−1

)
(67)

=
1

2

(
1 −1

)( 1
−1

)
(68)

=
1

2
(1 · 1 +−1 · −1) (69)

|||− > ||2 = 1 (70)

Operators can be thought of outer products which transforms H → H:

(|ψ >< φ|)|γ > = |ψ > (< φ|γ >) (71)

= (< φ|γ >)|ψ > (72)

In this case, the input vector |γ >∈ H and after operation, the result vector,
|ψ >∈ H

Linear operator T can be rewritten with the kets and bras |bn >∈ B:

T =
∑

bn,bm∈B

Tn,m|bn >< bm| (73)
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alongside, T operator can be written as in matrix form:

T =


T11 T12 . . T1,N−1 T1N
T21 T22 . . . .
. . . . . .
. . . . . .

TN1 TN2 . . TN,N−1 TNN


When operator T is applied onto an arbitrary vector |ψ >:

T |ψ > =
∑

bn,bm∈B

Tn,m|bn >< bm||ψ > (74)

=
∑

bn,bm∈B

Tn,m(< bm|ψ >)|bn > (75)

=
∑

bn,bm∈B

Tn,mψm|bn > (76)

where ψm is defined as < bm|ψ >

So, say that we want to now solve for the elements of some operator Z, but
only know what Z does to |0 > and |1 >.Knowing that

Z|0 >= |0 > and Z|1 >= −|1 >

We can write Z as a 2x2 matrix

Z =

(
Z11 Z12

Z21 Z22

)
Applying it to |0 >, we can solve for the elements Z11 and Z12:

Z|0 > = |0 > (77)(
Z11 Z12

Z21 Z22

)(
1
0

)
=

(
1
0

)
(78)

Z11 = 1 (79)

Z21 = 0 (80)

Z →
(

1 Z12

0 Z22

)
(81)

We have solved for the elements Z11 and Z12. Now, let’s apply Z operator to
|1 > to solve for the rest of the Z matrix.
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Z|1 > = −|1 > (82)(
1 Z12

0 Z22

)(
0
1

)
=

(
0
1

)
(83)

Z12 = 0 (84)

Z22 = −1 (85)

Z →
(

1 0
0 −1

)
(86)

The Identity operator can be defined as the following using a set of orthogonal
vectors |bn >

1 =
∑
bn∈B

|bn >< bn|

A unitary operator U is defined such that: U† = U−1 where U−1 is the inverse
of U.
If |ψ > is eigenvector of operator T, then we have:

T |ψ >= c|ψ >

then
c ∈ C

where c would be the called the eigenvalue of T.
If the T operator is Hermitian, T = T †, then

T |ψ >= c|ψ >

then
c ∈ R

The trace of an operator is defined as:

Tr(A) =
∑
bn

< bn|A|bn >

where the choice of the orthonormal basis is irrelevant.

Commutativity of Operators: A,B commute if: AB=BA or AB-BA=0. Or in
short, [A,B]=0.
Spectral theorem says that if an operator T is a matrix operator, there is a
unitary operator P such that: T = PΛP † where Λ is a diagonal matrix
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X|0 >= |1 > X|1 >= |0 >

X =

(
0 1
1 0

)
(87)

(
0 1
1 0

)
=

(
1√
2

1√
2

1√
2

−1√
2

)(
1 0
0 −1

)( 1√
2

1√
2

1√
2

−1√
2

)
(88)

where

P =

(
1√
2

1√
2

1√
2

−1√
2

)
The eigenvalues of X are 1 and -1 and the eigenvectors of X are(

1√
2
1√
2

)
,

(
1√
2
−1√
2

)
respectively. These look like the Hadamard basis:

|+ >=
1√
2
|0 > +

1√
2
|1 >, |− >=

1√
2
|0 > − 1√

2
|1 >

Every normal operator can also be written in diagonal form:

T =
∑
i

Ti|Ti >< Ti|

where |Ti >< Ti| is a projector and < Ti|Tj >= δi,j

f(T ) =
∑
m

amT
m (89)

=
∑
m

am

(∑
i

Ti|Ti >< Ti|

)m

(90)

=
∑
m

am
∑
i

Tm
i |Ti >< Ti| (91)

=
∑
i

(∑
m

amT
m
i

)
|Ti >< Ti| (92)

=
∑
i

f(Ti)|Ti >< Ti| (93)

(94)

16



Tensor products were also reviewed in the chapter.

A
⊗

B =



A11B11 ... A11B1q ... ... A1nB11 A1nB1q

. . . . . . .

. . . . . . .
A11Bp1 ... A11Bpq ... ... A1nBp1 A1nBpq

. . . . . . .

. . . . . . .
Am1B11 ... Am1B1q ... ... AmnB11 AmnB1q

. . . . . . .

. . . . . . .
Am1Bp1 ... Am1Bpq ... ... AmnBp1 AmnBpq


(95)

A more compact way of writing this is:

A
⊗

B =


A11[B] A12[B] ... A1n[B]
A21[B] A22[B] ... A2n[B]

. . . .
Am1[B] Am2[B] ... Amn[B]


where

Aij [B] =


AijB11 AijB12 ... AijB1q

AijB21 AijB22 ... AijB2q

. . . .
AijBp1 AijBp2 ... AijBpq

 (96)
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For a tensor multiplication, (α0|0 > +α1|1 >)
⊗

(β0|0 > +β1|1 >) can be
represented in matrix form.

(
α0

α1

)⊗(
β0
β1

)
=


α0β0
α0β1
α1β0
α1β1



The Schmidt Decomposition Theorem states that if |ψ > is vector in tensor
product space (HA

⊗
HB), then you can represent it as a sum of sets of tensor

products of orthonormal bases |ψA
i >∈ HA and |ψB

j >∈ HB , such as the
following:

|ψ >=
∑
i

√
pi|φAi > |φBi >

Another way to state this is that we can always find a set of orthonormal
bases from each space (H) so that the cross terms vanish. In this case, we
should be able to find a set of orthonormal bases from HA and another set of
orthonormal bases from HB so that we would only be summing up the
without doubly-nesting the summation.
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