1. Introduction

Welcome to the journey of quantum computation! As a first step, let us review some
general concepts related to this subject.

1.1 Theory of computation

First of all, we need to clarify what we mean by computation. A computation is defined
as a mathematical calculation which involves a pre-defined sequence of steps. The
first computation models used to solve certain mathematical problems, like the
solution of quadratic equations, can actually be traced back to the time of the ancient
Babylonians. To facilitate the process of computing, machines capable of helping to go
through a computation were invented soon after. For example, one can think of the
abacus, which was used for calculating many arithmetic operations. The fundamental
idea behind the use of machines for computation is the one-to-one correspondence
between the states of the machine and the computational states at each step of the
computation.

Turing Machine

Computational machines can be designed following many different models. Among all,
the most examined one is the Turing machine, which was formulated by Alan Turing [1].
Such a machine is made of three main parts: the memory, the input/output module and
the instruction set. The memory is in the form of an infinitely long tape which is divided
into cells; the input/output module is a "head", which moves along the tape and
reads/writes symbols in each cell on the tape; the instruction set is a user-defined table
of instructions specifying which action the head will do next. The machine executes a
computation in the following way: each time the head reads in a symbol from the tape,
then it gives an output based on the symbol read and the instruction set; the process
either continues as the head moves forward or backwards, or it halts.

Circuit model of computation



Another model for a computational machine is the circuit model of computation. This
model enjoys an easier implementation in practice and is the one that has been
adopted by modern digital computers. In the circuit model, the basic unit for
computation is a gate. Gates implement specific elementary operations. When several
gates are assembled together into a circuit, it becomes possible to calculate more
complicated mathematical expressions. In this model, a computation is done by
feeding the input values to a circuit and retrieving the output at the end of the circuit. In
the case of digital computers, gates compute Boolean logic operations (NOT, AND,
OR, ...). Circuits can be designed to calculate Boolean expressions equivalent to all
known arithmetic operations.

One important characteristic of the gates in the circuit model is their
reversibility/irreversibility. A reversible gate allows you to carry out the computation
backwards and retrieve the inputs, given the output. In contrast, an irreversible gate
does not allow to reconstruct the input from the output. This detail will be of
importance in quantum computations, which must be done in a reversible manner.

Reversible circuits

A reversible circuit is a circuit that allows to retrieve the input values of the computation
given its output values. A reversible circuit must involve a series of reversible gates. An
example of a reversible logic gate is the NOT gate. For such a logic gate, it is always
possible to reconstruct the input given the output.

Irreversible circuits

On the contrary, irreversible circuits can only work in one direction and it is impossible
to reconstruct the input values of the computation from the outputs. Given any circuit,
a single irreversible gate is enough to make the entire circuit irreversible. An example of
an irreversible logic gate is the AND gate. The AND gate has four possible input
combinations and generates two possible outputs. Therefore, for a given output there
is no way to uniquely identify the input values. In general, it is possible to turn an
irreversible logic gate into a reversible one by including the input in the output. An
example of this procedure is the Toffoli gate. It takes three inputs: the two values used
in the AND operation, and the third value which is simply zero. The output of the Toffoli
gate also consists of three values: the copy of two inputs which are used in the
computation and the result itself. Naturally, irreversible circuits lose information during



the computation. According to Landauer's principle, there is a minimum entropy cost
associated with the erasure of information. Therefore, irreversible computation
dissipate energy in the form of heat.

1.2 Quantum mechanics

Quantum mechanics is the theory of physics which provides a universal framework for
the description of all natural phenomena. Its name, "quantum", has to do with the fact
that the theory was developed for the description of atomic and subatomic particles,
whose energy levels were found to be quantized in certain circumstances. But do not
be mistaken, quantum mechanics is a completely general theory which can be used to
make any predictions about the physical world. When dealing with macroscopic
objects, however, the quantum mechanical description coincides with the classical
one. Therefore, it is simpler to use classical theories for their description. Quantum
mechanics is in-famously known for the counter-intuitive features which arise because
of the mathematical structure of the theory. The superposition principle and quantum
entanglement are two examples of such quantum features which are of extreme
importance in quantum computation. Although their existence is directly contained in
the mathematics of the theory, an interpretation in terms of physical phenomena can
be extremely difficult. These, and more, issues related to the interpretation of the
mathematical characteristics of the theory in terms of the corresponding properties of
the physical world are still today's subjects of much debate and thus will not be
discussed in this lecture notes.

1.3 Quantum computation

In the discussion of the theory of computation given above, we assumed that the
machines implementing the computation behaved according to the classical laws of
physics. This is true for most macroscopic objects operating in conditions familiar to
us. Since the beginning of the century, however, our ability to arrange the extreme
conditions in order to observe quantum mechanical effects has increased dramatically.
To the point that we are now able to manipulate quantum mechanical objects in a
predictable manner. This allows us to implement computations on machines which
behave according to the principles of quantum mechanics. As mentioned earlier,
quantum objects possess some very interesting and counter-intuitive features.
Because of these features, like superposition and entanglement, machines built with



quantum mechanical elements can do computation differently. Therefore, a
computation which might take a long time to run on a Turing machine (and thus a
digital computer), can take much less time on, say, a quantum Turing machine, a Turing
machine improved to exploit the features of quantum mechanics. It is important to
emphasize that not all mathematical problems can be solved faster on a quantum
Turing machine. As of today, only a few quantum algorithms have been found which
can speed-up the computation of the solution to certain mathematical problems, like
factoring numbers.

Similarly, to classical computation, quantum computation is implemented in actual
machine following the circuit model of computation. Because of the reversibility
inherent in the laws of quantum mechanics, quantum circuits must be made of
reversible gates. To carry out a quantum computation, a certain quantum state (a
vector of complex values) is given as input to the quantum circuit. Then a sequence of
quantum gates executes unitary operations (roughly speaking, equivalent to multiply by
complex valued matrices) on the input state. The quantum state at the end of the
circuit is measured to obtain the result of the computation.

In the rest of the lecture notes, we will focus on the introduction of quantum
mechanics, quantum computation and the first applications.

In the next chapters...

These lecture notes provide an introduction to quantum computation for beginning
undergraduate students. In the first part of the notes, corresponding to chapters 2,3
and 4, we introduce the fundamentals of quantum mechanics and quantum
computation. Chapter 2 is devoted to the mathematics of quantum mechanics, linear
algebra. In chapter 3, the fundamental ideas of quantum mechanics are introduced in
an axiomatic way. The relation between the mathematical tools and their physical
interpretation is made clearer. The basic elements of quantum computation are
explained in chapter 4.

The second part of the lecture notes delves more deeply into quantum computation
and its applications. Starting from chapter 5, programming with QISKit is introduced. A
template for writing quantum programs with QISKit is given and several examples are
worked out. Chapter 6 provides the first examples of quantum algorithm which
promise an advantage over their classical counterparts. The Deutsch, Bernstein-



Vazirani and Simon algorithm are thoroughly reviewed. In chapter 7, other interesting
applications of quantum computation are explored. Here the details of quantum
teleportation, the possibility of transferring an unknown quantum state, and
superdense coding, the communication of 2 classical bits through the transmission of
a single entangled qubit, are given. The most famous quantum algorithm, Shor's, is
explained in chapter 8. A useful protocol which exploits quantum features to improve
the security of communication is shown in chapter 9. At the last stop of our journey, in
chapter 10 we introduce quantum error correction.
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