
Iowa State University
Digital Repository @ Iowa State University

Graduate Theses and Dissertations Graduate College

2010

A framework for safe composition of
heterogeneous SOA services in a pervasive
computing environment with resource constraints
Jose Manuel Reyes Alamo
Iowa State University, jmreyes@cs.iastate.edu

Follow this and additional works at: http://lib.dr.iastate.edu/etd
Part of the Computer Sciences Commons

This Dissertation is brought to you for free and open access by the Graduate College at Digital Repository @ Iowa State University. It has been accepted
for inclusion in Graduate Theses and Dissertations by an authorized administrator of Digital Repository @ Iowa State University. For more
information, please contact hinefuku@iastate.edu.

Recommended Citation
Reyes Alamo, Jose Manuel, "A framework for safe composition of heterogeneous SOA services in a pervasive computing environment
with resource constraints" (2010). Graduate Theses and Dissertations. Paper 11445.

http://lib.dr.iastate.edu?utm_source=lib.dr.iastate.edu%2Fetd%2F11445&utm_medium=PDF&utm_campaign=PDFCoverPages
http://lib.dr.iastate.edu/etd?utm_source=lib.dr.iastate.edu%2Fetd%2F11445&utm_medium=PDF&utm_campaign=PDFCoverPages
http://lib.dr.iastate.edu/grad?utm_source=lib.dr.iastate.edu%2Fetd%2F11445&utm_medium=PDF&utm_campaign=PDFCoverPages
http://lib.dr.iastate.edu/etd?utm_source=lib.dr.iastate.edu%2Fetd%2F11445&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=lib.dr.iastate.edu%2Fetd%2F11445&utm_medium=PDF&utm_campaign=PDFCoverPages
http://lib.dr.iastate.edu/etd/11445?utm_source=lib.dr.iastate.edu%2Fetd%2F11445&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:hinefuku@iastate.edu


 

 

A framework for safe composition of heterogeneous SOA services in a pervasive 

computing environment with resource constraints 

 

by 

 

José M. Reyes Álamo 

 

A dissertation submitted to the graduate faculty 

in partial fulfillment of the requirements for the degree of 

DOCTOR OF PHILOSOPHY 

 

 

Major: Computer Science 

Program of Study Committee: 
Johnny Wong, Co-Major Professor 
Carl Chang, Co-Major Professor 

Samik Basu 
Ying Cai 

Wensheng Zhang 
 
 
 

 

Iowa State University 

Ames, Iowa 

2010 

Copyright © José M. Reyes Álamo, 2010. All rights reserved. 



ii 

 

DEDICATION 

 
To God and to my family.  



iii 

 

Table of Content 

 

 
LIST OF TABLES ....................................................................................................................... ix 

LIST OF FIGURES ...................................................................................................................... x 

ACKNOWLDGEMENTS .......................................................................................................... xii 

ABSTRACT ................................................................................................................................ xiii 

CHAPTER 1.  INTRODUCTION ............................................................................................... 1 

1.1  Service-Oriented Computing .................................................................................................3 

1.2  Composition of Services .......................................................................................................5 

1.3  Model Checking Composite Services ...................................................................................7 

1.4  Research Goals and Contributions: .......................................................................................8 

1.5  Organization of the Thesis ..................................................................................................10 

CHAPTER 2.  LITERATURE REVIEW  ................................................................................. 12 

2.1  Smart Homes .......................................................................................................................12 

2.2  Web Services .......................................................................................................................15 

2.3  OSGi Services .....................................................................................................................17 

2.4  Services Composition ..........................................................................................................19 

2.5  Formal Software Analysis ...................................................................................................22 

2.6  Wireless Mesh Networks ....................................................................................................24 

CHAPTER 3.  FUNDAMENTAL SERVICES IN PERVASIVE ENVIRONMENTS  ......... 26 

3.1  Introduction .........................................................................................................................26 

3.2  MISS: Medicine Information Support System in the Smart Home Environment ...............27 

3.2.1  Abstract.........................................................................................................................27 



iv 

 

3.2.2  Introduction ..................................................................................................................28 

3.2.3  Current Technology and System Requirements ...........................................................30 

3.2.4  MISS System and Design .............................................................................................32 

3.2.5  Proposed Model ............................................................................................................38 

3.2.6  MISS Conflict Checking ..............................................................................................41 

3.2.7  Instantiation of the Model and System Design .............................................................43 

3.2.8  Prototyped Implementation ..........................................................................................46 

3.2.9  Conclusions and Future Work ......................................................................................47 

3.3  Service-Oriented Middleware for Smart Home Applications .............................................48 

3.3.1  Abstract.........................................................................................................................48 

3.3.2  Introduction ..................................................................................................................48 

3.3.3  Related work .................................................................................................................49 

3.3.4  Smart homes as a device-to-device environment .........................................................50 

3.3.5  Smart home requirements .............................................................................................52 

3.3.6  Smart home layered architecture ..................................................................................53 

3.3.7  Smart home demos .......................................................................................................55 

3.3.8  Conclusion and future work .........................................................................................56 

3.4  Composition of Services for Notifications in Smart Homes ...............................................57 

3.4.1  Abstract.........................................................................................................................57 

3.4.2  Introduction ..................................................................................................................57 

3.4.3  Related Work ................................................................................................................58 

3.4.4  Our Approach ...............................................................................................................58 

3.4.5  Architecture ..................................................................................................................60 

3.4.6 Conclusions and Future Work .......................................................................................64 



v 

 

3.5  Using Web Services for Medication Management in a Smart Home Environment ...........64 

3.5.1  Abstract.........................................................................................................................65 

3.5.2  Introduction ..................................................................................................................65 

3.5.3  Related Work ................................................................................................................66 

3.5.4  OSGi and Web Services in the MISS System ..............................................................66 

3.5.5  Formal Verification ......................................................................................................68 

3.5.6  Prototyped Implementation Using Web Services.........................................................71 

3.5.7  Conclusion and Future Work........................................................................................72 

CHAPTER 4.  SUPPORT FOR MEDICATION SAFETY AND COMPLIANCE IN 

SMART HOME ENVIRONMENTS ........................................................................................ 73 

4.1  Abstract ...............................................................................................................................73 

4.2  Introduction .........................................................................................................................73 

4.3  Related Work .......................................................................................................................75 

4.4  System Requirements and Design .......................................................................................76 

4.4.1  System Requirements ...................................................................................................76 

4.4.2  MISS Design ................................................................................................................78 

4.4.3  Doctor’s Subsystem (DS) .............................................................................................80 

4.4.4  The Pharmacy Subsystem (PS) ....................................................................................80 

4.4.5  The Smart Home Subsystem (SS) ................................................................................81 

4.4.6  Interoperability by Using Web Services.......................................................................82 

4.5  Designing for Privacy ..........................................................................................................82 

4.6  System Architecture ............................................................................................................85 

4.7  System Modeling .................................................................................................................92 

4.7.1  Model the MCD ............................................................................................................92 



vi 

 

4.7.2  Conflict Checking .........................................................................................................94 

4.7.3  Conflicts at Doctor, Pharmacy, and Smart Home Subsystem ......................................96 

4.8  Compliance Monitoring ......................................................................................................97 

4.9  Prototyped Implementation ...............................................................................................100 

4.10  Conclusion and Future Work ..........................................................................................102 

CHAPTER 5.  A COMPOSITION FRAMEWORK FOR SERVICES OF 

HETEROGENEOUS SERVICE-ORIENTED ARCHITECTURES .................................. 103 

5.1  Abstract: ............................................................................................................................103 

5.2  Introduction .......................................................................................................................103 

5.3  Related Work .....................................................................................................................105 

5.4  Requirements for SOA Compositions ...............................................................................108 

5.5  The Simple Service Composition Language (SSCL) ........................................................110 

5.6  The Composition Framework Details ...............................................................................115 

5.6.1  WS_FULL Service: ....................................................................................................117 

5.6.2  SSCL2OSGi Service: .................................................................................................118 

5.6.3  HTTP_JARS Service: .................................................................................................121 

5.6.4  The OSGi2WS Service: ..............................................................................................121 

5.6.5  The WS2OSGi Service: ..............................................................................................122 

5.6.6  Guidelines for Supporting Other SOAs:.....................................................................122 

5.7  Case Study for MISS .........................................................................................................123 

5.8  Evaluation ..........................................................................................................................125 

5.8.1  Composition Time Overhead .....................................................................................125 

5.8.2  Execution time ............................................................................................................127 

5.9  Conclusions and future work .............................................................................................130 



vii 

 

CHAPTER 6.  A COMBINED MODEL CHECKING APPROACHFOR SAFETY OF 

COMPOSITE SERVICES ....................................................................................................... 131 

6.1  Abstract .............................................................................................................................131 

6.2  Introduction and Motivation ..............................................................................................131 

6.3  Background .......................................................................................................................134 

6.4  Model Checking Composite Services ...............................................................................138 

6.5  Modeling and Checking Approach for Baseline Services ................................................141 

6.5.1  Example of Services Modeled Using PROMELA .....................................................141 

6.5.2  Safety Criteria in Compliance with the HIPAA Law .................................................145 

6.6  Modeling and Checking Approach for Extended Services ...............................................149 

6.6.1  The SSCL2OSGi Composition Framework Description ...........................................149 

6.6.2  Converting SSCL to oWFN........................................................................................150 

6.6.3  Model Checking oWFN Using Fiona .........................................................................153 

6.6.4  Computing Public View (PV): ...................................................................................154 

6.6.5  Computing Interaction Graph (IG): ............................................................................154 

6.6.6  Computing Operating Guideline (OG): ......................................................................154 

6.6.7  Check for Cycles, False Nodes and Controllability ...................................................155 

6.7  Composite Services Safety Proofs ....................................................................................158 

6.8  Conclusions and future work .............................................................................................159 

CHAPTER 7.  COMPOSITION FRAMEWORK PERFORMANCE EVALUATION 

AND ANALYSIS ....................................................................................................................... 161 

7.1  Introduction .......................................................................................................................161 

7.2  Experiment Setup ..............................................................................................................162 

7.2.1  Regular Network Setup ..............................................................................................162 



viii 

 

7.2.2  Wireless Mesh Network Setup ...................................................................................163 

7.3  Overhead of the Composition Framework ........................................................................163 

7.4  Total Parse Time ...............................................................................................................165 

7.5  Composite Services Performance Comparison .................................................................166 

CHAPTER 8.  CONCLUSIONS AND FUTURE WORK .................................................... 176 

8.1 Summary .......................................................................................................................176 

8.2 Contributions .................................................................................................................177 

8.3 Future Work ..................................................................................................................178 

REFERENCES .......................................................................................................................... 180 

APPENDIX A. Formal Syntax of SSCL ................................................................................. 191 

APPENDIX B. MISS Workflow in SSCL ............................................................................... 193 

APPENDIX C. MISS Model in PROMELA........................................................................... 198 

APPENDIX D. MISS Model in oWFN .................................................................................... 206 

 
  



ix 

 

LIST OF TABLES 
 
 

Table 3.1 Patient’s data at each subsystem ............................................................................ 45 

Table 3.2 Prescriptions at DS ................................................................................................. 46 

Table 3.3 Patient’s medicines at each subsystem ................................................................... 46 

Table 3.4 Example of a prescription at DS ............................................................................ 46 

 



x 

 

LIST OF FIGURES 
 
 

 

Figure 3.1 - Medical information system diagram ................................................................. 33 

Figure 3.2 - Use cases and actors ........................................................................................... 37 

Figure 3.3 - Smart Home Layered Architecture .................................................................... 54 

Figure 3.4 - Sensors Demo Diagram. ..................................................................................... 56 

Figure 3.5 - General Smart home design ............................................................................... 59 

Figure 3.6 - Basic Design Architecture .................................................................................. 61 

Figure 3.7 – Major components of our policy architecture.................................................... 69 

Figure 3.8 - Request Evaluation Process ............................................................................... 71 

Figure 4.1 - Medicine information support system diagram .................................................. 78 

Figure 4.2 - Medicine information support system use cases and actors ............................... 79 

Figure 4.3 - Communications between MISS and MCD ....................................................... 87 

Figure 4.4 - Doctor Subsystem .............................................................................................. 88 

Figure 4.5 - Pharmacy subsystem .......................................................................................... 89 

Figure 4.6 - Smart home subsystem ....................................................................................... 90 

Figure 4.7 - Smart home subsystem 2 .................................................................................... 91 

Figure 4.8 - Smart home subsystem 3 .................................................................................... 92 

Figure 4.9 - Multiple paths of conflicts.................................................................................. 97 

Figure 4.10 - Timeliness intervals: take dosage d every time interval t ................................ 99 

Figure 4.11 - Timeliness intervals: take m before activity a, take m’ after activity a’ ........ 100 

Figure 5.1 - The SSCL2OSGi Composition Framework Architecture. ............................... 116 

Figure 5.2 - Graphical representation of the workflow of the MISS Service using SSCL. . 125 

Figure 5.3 - Time of the composition activities for MISS. .................................................. 126 

Figure 5.4 - Parse time of the SSCL file implementing the MISS Service.......................... 127 

Figure 5.5 - Execution time of each implementation where the dark line indicates the 

standard deviation. ................................................................................................................ 128 

Figure 5.6 - Execution time of each implementation where the dark line indicates the 

minimum and maximum. ...................................................................................................... 129 



xi 

 

Figure 6.1 - Graphical representation of a Petri Net and its firing....................................... 135 

Figure 6.2 - Graphical representation of an oWFN ............................................................. 136 

Figure 6.3 - Model Checking Architecture for Baseline and Extended Services ................ 139 

Figure 6.4 - Model Checking Architecture for Extended Services ...................................... 140 

Figure 6.5 - Structurally reduced oWFN generated from the SSCL process ....................... 153 

Figure 6.6 - Partial Public View Graph of the MISS system ............................................... 155 

Figure 6.7 - Partial Interaction Graph of the MISS system ................................................. 156 

Figure 6.8 - Partial Operating Guideline Graph of the MISS System ................................. 157 

Figure 7.1 - Composition time overhead for MISS ............................................................. 164 

Figure 7.2 - Parse and binding overhead .............................................................................. 166 

Figure 7.3 - Composite services in a regular network with their standard deviation. ......... 167 

Figure 7.4 - Composite services in a regular network with their minimum and maximum. 168 

Figure 7.5 - Composite services in a WMN with their standard deviation. ......................... 169 

Figure 7.6- Composite services in a WMN network with their minimum and maximum. . 169 

Figure 7.7 - MISS_OSGi in a regular network and a WMN with their std. deviation. ....... 170 

Figure 7.8 - MISS_OSGi in a regular network and a WMN with their minimum and 

maximum. ............................................................................................................................. 171 

Figure 7.9 - MISS_COMB in a regular network and a WMN with their std. deviation ...... 172 

Figure 7.10 - MISS_COMB in a regular network and a WMN with their minimum and 

maximum .............................................................................................................................. 172 

Figure 7.11 - MISS_WS in a regular network and a WMN with their standard deviation .. 173 

Figure 7.12 - MISS_WS in a regular network and a WMN with their minimum and 

maximum .............................................................................................................................. 174 

 

  



xii 

 

ACKNOWLDGEMENTS 
 

To my major professors: Dr. Johnny Wong and Dr. Carl K. Chang 

The rest of my committee members: Dr. Samik Basu, Dr. Wensheng Zhang and Dr. Ying 

Cai 

Collaborators in computer science department: Dr. Hen-I Yang, Linda Dutton and Dr. 

Simanta Mitra 

To my lab mates: Tanmoy Sarkar, Ryan Babbitt, Fuchao Zhou, Ruchita Sirkanungo and 

Guillermo Hernández 

Staff in the Graduate College: Thelma Harding and Dr. George Jackson 

My undergraduate professors who helped through the process of going to graduate 

school: Yolanda Vélez, Edward Caro, José Juan Díaz Caballero and Fernando Santos 

To my family: Luz Myriam Álamo Salgado, Ángel F. Reyes Fuentes, Ángel F. Reyes 

Álamo, Diana M. Rodríguez Escalante, Felícita Salgado Ramos and Suheyris Reyes 

Álamo 

 

  



xiii 

 

ABSTRACT 
 
 

The Service Oriented Computing (SOC) paradigm, defines services as software artifacts 

whose implementations are separated from their specifications. Application developers rely 

on services to simplify the design, reduce the development time and cost. Within the SOC 

paradigm, different Service Oriented Architectures (SOAs) have been developed. These 

different SOAs provide platform independence, programming-language independence, 

defined standards, and network support. Even when different SOAs follow the same SOC 

principles, in practice it is difficult to compose services from heterogeneous architectures. 

Automatic the process of composition of services from heterogeneous SOAs is not a trivial 

task.  

Current composition tools usually focus on a single SOA, while others do not provide 

mechanisms for ensuring safety of composite services and their interactions. Given that some 

services might perform critical operations or manage sensitive data, defining safety for 

services and checking for compliance is crucial. This work proposes and workflow 

specification language for composite services that is SOA-independent. It also presents a 

framework for automatic composition of services of heterogeneous SOAs, supporting web 

services (WS) and OSGi services as an example. It integrates formal software analysis 

methods to ensure the safety of composite services and their interactions. Experiments are 

conducted to study the performance of the composite service generated automatically by the 

framework with composite services using current composition methods. We use as an 

example a smart home composite service for the management of medicines, deployed in a 

regular and in a resource-constrained network environment. 

 



1 

 

CHAPTER 1.  INTRODUCTION 
 
 

A Smart Home is a pervasive computing environment equipped with technology such as 

sensors, actuators, services, and applications to assist the residents to perform their activities 

of daily living [1]. Smart Home research has mainly focused on helping the elderly and 

persons with special needs to stay home longer and live more independently. In order to 

promote aging in-place these homes must be customizable and extendable. Every person and 

every home have a different set of requirements and preferences. This makes standalone 

applications infeasible to provide a customizable, comprehensive solution for a pervasive 

environment such as the Smart Home. A flexible, dynamic solution where features can be 

added and removed without disrupting the overall functionality of the Smart Home system is 

preferred. 

A service-oriented approach provides the tools to address the problems found in 

pervasive computing environments such as the Smart Home. Over the years, there have been 

a number of studies on different devices and development approaches to support these 

dynamic environments. A service-oriented approach has been adopted for providing 

solutions to the challenges of developing Smart Home services and applications. The 

Service-Oriented Computing (SOC) paradigm delineates the guidelines for the development 

of services and service-oriented applications. Within SOC, several Service-Oriented 

Architectures (SOAs) have been proposed, developed, tested, and deployed. These SOAs 

have provided solutions to a diverse set of important issues. Nevertheless, each SOA operates 

independently and there is still a need for solutions that integrate them. 

This dissertation proposes a solution for the design and development of services and 

applications in pervasive computing environments using Smart Homes as an example. We 

strongly believe and support a SOC based solution. Over the years, several SOAs such as 

Web Services, OSGi, Jini and UPnP have emerged. While these SOAs follow the same SOC 

paradigm, usually the services developed in different SOA are not compatible with each 

other. Several researchers have tried to compose services of heterogeneous SOAs, as task 

demonstrated not to be a trivial one. As SOC gains more adepts, there is a greater need for 



2 

 

supporting composite services that combines services of heterogeneous SOAs. Based on the 

SOC standard, services are seen as individual units based on the functionality they provide 

and not as pieces of software developed using a particular SOA. Unfortunately, in today’s 

real world applications, SOC development is tightly coupled to the particular SOA of the 

services. Being able to create composite services independently of their particular SOA, will 

have an impact in the number of services that can be selected. This could result in an increase 

in flexibility, availability, and functionality of individual and composite services. This 

approach can also have the effect of increasing scalability, reduce the cost, and require less 

development time and learning curve.  

In this work a composition framework that allows creating composite services 

independently of the SOA of the individual services is proposed, developed, and tested. The 

requirements for creating composite services independently of their particular architecture 

are elicited. A discussion on how to incorporate these requirements into the SOC standard is 

presented. A SOA-independent language to specify the workflow of composite services, 

inspired in technology currently under use is defined. The framework developed, composes 

the services using this SOA-independent language, and creates an implementation of the 

composite service that supports services from heterogeneous SOAs. This composition 

process is completely automatic and platform, language, and SOA independent. Services 

used during the composition process are included without requiring any changes to their 

original implementation and without translating services from one SOA to another. During 

the composition process, the framework automatically checks a set of safety properties of the 

composite service and the services interactions. The framework is designed with a selection 

algorithm that capitalizes on performance, as our work focuses on improving this non-

functional requirement for composite services. 

A mechanism is presented to ensure that these compositions of heterogeneous services 

satisfy the defined safety criteria. To perform these checks formal software analysis 

techniques are used, specifically model checking. Different model checking techniques are 

incorporated as a fundamental part of our composition framework. Based on the services 

properties, they are categorized as baseline or extended. These different categories of 



3 

 

services supported and their interactions are checked. A semi-automatic technique is shown 

on how to model and check the baseline services that are assumed to run continuously in the 

system and to have a custom set of safety criteria. An automatic technique is used for 

extended services that employs the workflow specification of the composite service and 

automatically checks the composite services and their interactions. Extended services are 

assumed to be more dynamic and might come and go or change. 

Our composition framework is designed focusing on the non-functional requirements of 

safety and performance. Different experiments take place to test whether our framework 

indeed satisfies these requirements. We are especially interested in performance as pervasive 

environment relying on services such as a Smart Home might be located in rural areas where 

resources like networking might be scarce. Performance of the composition process, the 

execution of the resulting composite service and of the communications becomes critical. To 

test our composition framework performance, the execution of composite services is 

measured under different network environments. The network environments used are a 

regular LAN network and a wireless mesh network (WMN). A WMN provides a constrained 

networking environment. In the experiments, the overhead that the composition framework 

adds to create the intended composite service and perform the model check is measured. 

Composite services using current composition techniques are created. These composites are 

usually generated manually and they use only services of the same SOA. The performance of 

the composite service automatically produced by the composition framework is compared 

with the performance of the composite service created using current methods. These different 

composites are executed under a regular LAN and WMN networking environment and a 

summary of the results and conclusions is presented. In the next section, a summary of the 

main topics relevant to this dissertation are presented.  

1.1  Service-Oriented Computing 

The properties of services make them an appropriate choice for development of pervasive 

computing environments like the Smart Home. A service is defined as an autonomous, 

loosely coupled, platform independent entity that can be described, published, discovered, 

and invoked. A service can perform simple or complex computations [2]. A service can be 



4 

 

atomic or can combine several atomic services into a composite. Every service belongs to a 

particular Service-Oriented Architecture (SOA). There are several SOAs like Web Services 

and OSGi. Each SOA has their particular set of features and strengths but all of them follow 

the same SOC paradigm. We believe that having a pool of services from heterogeneous 

SOAs available will help to better satisfy our performance and safety requirements, as the 

most appropriate services can be chosen without limiting to those of a single SOA. 

In this work, two SOAs widely used in Smart Home environments are studied: Web 

Services and OSGi services. Web Services (WS) are software systems identified by a URL 

that use XML files to define their public interfaces and binding information. This allows 

other software systems to search and discover services definitions. These other systems may 

interact with the WS as described by its definition, using XML-based messages conveyed by 

Internet protocols [3]. WS are a very interesting SOA as a significant amount of research has 

been devoted to this area. This resulted in the development of a plethora of WS that can 

certainly be used. The other SOA studied is OSGi, which enables the deployment of services 

over wide area networks to local networks and devices. It specifies a layer with a common 

architecture for the execution of services. This architecture maps onto the physical and 

logical components providing a service platform that service providers can use to deliver 

services to customers in their own environment [4]. Pervasive environments such as the 

Smart Home make use OSGi, as it is very convenient for controlling small and embedded 

devices such as cell phones, sensors, and actuators. In addition, OSGi services are local and 

the framework where services are deployed has strong security. 

There have been several standardization efforts for individual SOA, but not for 

combining services of different SOA. The Open Service Oriented Architecture (OSOA) [5] is 

an informal group of industry leaders that share the common interest of defining a language-

neutral programming model that meets the needs of enterprise developers who develop 

software that exploits Service Oriented Architecture characteristics and benefits. Their 

initiative gears toward defining specifications for Web Services technology. Control over this 

effort has been transferred to the standardization group OASIS-OPEN [6], which is a 



5 

 

consortium that drives the development, convergence, and adoption of open standards for the 

global information society. IEEE apparently has the intention to standardize SOA, but little 

information can be found in their main portal for that effort [7]. The Open Services Gateway 

initiative (OSGi) alliance is responsible for the standardization of the OSGi framework and 

the services that the framework accepts [8]. These bodies, especially OASIS-OPEN have 

standardized several protocols for SOAs such as the SOAP, WSDL, WS-BPEL, and several 

other WS languages such as WS-Context, WS-Security, and WS-Reliable Messaging. The 

OSGi alliance has standardized the OSGi framework and the bundles structure, where a 

bundle is the mechanism used to package services. As noticed, each SOA has taken an 

independent approach into standardizing its own set of protocols. In our work, we present a 

framework that allows combination of services of heterogeneous SOAs and propose the 

guidelines for standardizing these kinds of operations. 

1.2  Composition of Services 

Several standardization bodies have proposed standards for composition of services. The 

OASIS-OPEN has defined the Reference Model for Service Oriented Architecture [9] to 

encourage the continued growth of different and specialized SOA implementations while 

preserving a common layer of understanding about what SOA is. In their Reference Model, 

they define the techniques for composition of services. They define the main technique for 

compositions known as orchestration as “a technique used to compose hierarchical and self-

contained service-oriented business processes that are executed and coordinated by a single 

agent acting in a ‘conductor’ role.” The implementations of orchestrations are typically 

described using a scripting language. An orchestration engine accepts the scripting language 

and executes the process orchestration description. The orchestration engine is a hardware or 

software component that acts as the central coordinator for executing the flows that comprise 

the orchestration. The standard assumes there is a hardware or software component that 

executes the process flow, but does not provide specific requirements for these engines. The 

OASIS-OPEN definition is very high level and we believe that a minimum set of 

requirements and capabilities for these scripting languages used for orchestrations should be 

provided. 



6 

 

Several approaches deal with the problem of service composition for a specific SOA. In 

the literature, we find that most works have focused on strategies for composing WS [3]. 

Other approaches have tackled the problem of combining different SOAs. Some middleware 

solutions translate legacy code, a particular programming language, or a service into another 

SOA, usually WS [10]. After the translation process, WS composition techniques are used. 

The problem with this type of approach is the overhead incurred in the translation process 

and the extra layer of communication that WS imposes that can affect the performance. In 

addition, we believe that analyst, developers, and other stakeholders made important design 

decisions when they chose a particular SOA over the others. Therefore, the original services 

implementation and architecture should be preserved, which is one of the features of our 

framework. Other composition frameworks mentioned in literature rely on abstract 

representations of services and simulations [11]. In our work, we provide an example of an 

extensible framework that uses actual services and performs composition of heterogeneous 

SOAs. A guideline on how to extend it to support other SOAs is provided as well. 

The Service Component Architecture (SCA) [12] is another standardized approach for 

the composition of service of heterogeneous platforms. The SCA specifications define how 

to create components and how to combine those components to form applications. The 

components of an SCA application can be built using technologies such as Java, C++, WS, 

Spring, and other services and programming languages that comply with SCA-defined 

programming models. SCA allows combining services developed using different 

technologies, but they have to follow the SCA guidelines. Services have to include a series of 

annotations in their source code for the SCA framework to accept them. This makes it 

difficult to use services their original implementation. In SCA, services bindings need to 

specify the particular technology or programming language of the service for the framework 

to be able to interact with it. The SCA standard assumes that services are deployed under the 

same domain and that entities will use the same vendor SCA framework implementation 

within their domain. Therefore, these set of assumption and requirements make SCA a tightly 

coupled technology. 



7 

 

A comparison of these frameworks and standards shows that none of them offers an 

independent, loosely coupled composition strategy that support services of heterogeneous 

SOAs. Our framework provides solution to these problems and considers the non-functional 

requirements of performance and safety. A motivating scenario applicable to our work in the 

future is in the deployment of interconnected smart homes in rural areas forming a smart 

village. Smart villages in rural areas might have limited network resources where efficient 

ways to compose services using minimum resources while ensuring safety becomes 

necessary. 

1.3  Model Checking Composite Services 

In this dissertation, formal software analysis, specifically model checking techniques are 

used to ensure the safety of the composite services and their interactions. Formal software 

analysis is a mathematically well-founded automated technique to reason about the behavior 

of a software system, with respect to a specification of soundness and unsoundness behavior 

[13]. Model checking is one of such techniques whose use in the last few years has increased 

as software becomes more complex and intractable. Model checking is a mechanism that 

helps to ensure that given a model of a system and a set of properties, whether the model 

satisfies the properties. 

In this work, the proposed framework for composition of heterogeneous SOAs services 

pays special attention to the safety of composite services and their interactions. In the 

previous sections, a description of the strategy to satisfy performance requirements used by 

our composition framework is outlined. For satisfying the safety requirements, the composite 

services and their interactions are checked for compliance with the safety criteria. The 

composition framework automatically models the composite service specification and their 

interactions. It uses model checking techniques to verify whether the composite service 

satisfies the established safety criteria. Model checking is a fundamental part of our 

framework as this checking is performed before creating the actual implementation of the 

composite service. If the model satisfies the safety criteria, the framework creates the 

composite service implementation. If the model does not satisfy the safety criteria, it is 

rejected, the user is informed of the errors found, and the implementation of the composite 



8 

 

does not proceed. Safety checking is an important issue for service compositions in general 

and for those services created automatically. 

1.4  Research Goals and Contributions: 

We believe that the SOA standard should include a minimum set of requirements of 

supported capabilities for the scripting languages used for orchestrations. A set of these 

requirements and a justification for them is provided. The Simple Service Composition 

Language (SSCL) is defined, as a language compliant with these minimum set of 

requirements established for orchestration languages. SSCL is an XML-based language that 

is used to specify the workflow of composite services in a simple way that is SOA-

independent. SSCL is simple to learn but with the expressive power to perform the 

functionalities required for services compositions. It is inspired in two XML-languages: the 

Business Processing Execution Language for WS (WS-BPEL) and the Service Component 

Definition Language (SCDL) for SCA. WS-BPEL is an XML-based language for specifying 

workflows and orchestrations designed for WS. SCDL is an XML-based language for 

specifying components and composites in SCA. SSCL combines the simplicity of SCDL 

with the expressiveness of WS-BPEL and supports functionalities such as invocation of 

services, basic data types, and decision and looping structures. 

Our study of the standardization efforts for SOA shows that WS, SCA, OSGi and other 

particular SOAs have taken an independent approach and there are no specific guidelines for 

composition of heterogeneous SOAs in a structured way. Some of the SOA main 

characteristics are the separation of the implementation from the specification and the ability 

to reuse and compose services. However, the guidelines for compositions are very high-level 

and we believe there is a need for them to be more specific. We strongly propose SSCL and 

its design principles to be part of any SOA standard. 

The composition framework presented accepts a composite service workflow description 

in SSCL as input and automatically produces an implementation of the composite service 

that relies on services of heterogeneous SOAs. The composition framework automatically 

searches the services needed, performs a safety check, creates the composite service relying 



9 

 

on services from heterogeneous SOAs in their original implementation, deploys the 

composite service, and starts it. 

A crucial step for our composition framework for automatically compose services of 

heterogeneous SOAs is to have a registry that stores the information of candidate services. 

Several existing registries were studied such as the Universal Description Discovery and 

Integration (UDDI) for WS and the OSCAR bundle repository for OSGi services. A 

customized service registry is provided that allows storing the information of different 

services and searching for them later. 

We show examples of composite services created by our composition framework that 

relies on services of heterogeneous SOAs. Our framework currently supports OSGi and WS, 

with the capability to be expanded to accept other SOAs. The main example used to test our 

framework is a smart home composite service for the management of medicines. 

The composition framework uses an algorithm to select the service that better satisfies 

our requirements when several services match the search criteria. This algorithm is context-

aware as is uses the context information to choose first those services already in use within 

the context. If a service is not found within the context, it searches the customized services 

registry and selects the service with the best performance. 

The performance and safety of the automatically created composite services are analyzed 

to determine if they satisfy our requirements. Several experiments are conducted where the 

results of the automatically generated composite service are compared with the results 

obtained from using current composition techniques. 

The composite services and their interactions are modeled and checked to ensure 

compliance with the safety criteria. For the set of baseline services, examples that model the 

services using PROMELA and their safety criteria using Linear Temporal Logic (LTL) are 

shown. These models are checked for safety compliance using the popular model checker 

SPIN as an example. 



10 

 

The safety of the extended services, like those automatically created using the 

composition framework is also checked. The interactions between these services, as specified 

in their SSCL file description, are checked for safety properties such as controllability, 

absence of deadlocks, and false nodes. These checks are performed automatically and 

integrated into the composition framework. Only those services that pass all the safety check 

are automatically implemented.  

We claim that SSCL has the same expressive power of other orchestration languages 

such as WS-BPEL. Our claim is justified by showing that SSCL and WS-BPEL have 

compatible semantics even when their syntax differs. 

We claim that the design of SSCL allows us to generate an open Workflow Net (oWFN) 

model of the composite services and that a compatible WS-BPEL process will generate the 

same oWFN. We justify this claim that will allow using existing tools to analyze and check 

the safety properties of oWFN. 

The performance of our composition framework is studied in regular and in a resource-

constrained environment. The performance under a constrained environment is studied to 

measure the feasibility of our composition framework. The regular environment is a LAN 

network while the constrained environment used is a Wireless Mesh Network (WMN). The 

overhead and the performance results of services deployed under a regular LAN network are 

compared with those deployed under the WMN. 

1.5  Organization of the Thesis 

The rest of the thesis is organized as follows:  

• Chapter 2 presents the literature review on the topics: smart homes, web services, 

OSGi services, web services compositions, formal software analysis, and wireless 

mesh networks. 

• Chapter 3 contains the details of a set of essential services precursors of the automatic 

composition framework. These services use the smart home as an example. Our 

findings have been published in several conference papers and chapter 3 reports them. 



11 

 

• Chapter 4 presents a modified version of a published journal paper that describes in 

details the Medicine Information Support System (MISS). The MISS system the main 

composite service example used throughout the discussions in this dissertation. 

• Chapter 5 includes a modified version of a submitted journal paper that describes the 

Simple Service Composition Language (SSCL) and provides the details of our 

automatic composition framework supporting services of heterogeneous SOAs. 

• Chapter 6 contains a modified version of a submitted journal paper that presents the 

details of strategy used to ensure the safety of services by combining model checking 

techniques and how they were integrated to our automatic composition framework. 

• Chapter 7 explains the performance analysis results by comparing the automatically 

composite service created by the framework with current composition techniques. 

Execution time under a regular LAN network is compared with the execution under a 

resource constrained WMN. 

• Chapter 8 summarizes the conclusions and future work.  



12 

 

CHAPTER 2.  LITERATURE REVIEW  
 

In this dissertation, we present a composition framework that supports heterogeneous SOAs 

that automatically creates the composite service implementation that capitalizes on 

performance and uses model checking to ensure its safety. This work presents a 

comprehensive solution to the problem of composition of services of different architectures. 

However, several related works exist in literature. This chapter provides background and 

related work on these topics like smart homes, web services, web services composition, 

OSGi, formal software analysis, and wireless mesh networks. 

2.1  Smart Homes 

A Smart Home is a house that integrates different technologies for assisting the residents on 

their daily and repetitive activities [14]. This general definition encompasses a broad range of 

different smart homes and their target populations. The technology used in the smart home 

can assists the residents in performing their activities of daily living [15]. As a result, early 

work coined the concept of a health smart home [1]. The design of a health smart home 

especially targets people suffering different pathologies, the handicapped, and the dependent 

elderly, generally forced to hospitalization or placed in a nursing home. As most smart home 

research has focused on health smart homes, in this work we will make use of term Smart 

Home to refer to them. 

A Smart Home is an example of a pervasive computing environment. Pervasive 

computing is also known as ubiquitous computing in some literature works [16]. A pervasive 

computing environment integrates computation into everyday object and activities [17]. The 

technology used in these environments includes sensors, actuators, and applications that 

interact with different appliances and data. Sensors are hardware devices that sense 

phenomena such as room temperature and humidity. Actuators are devices that can perform 

an action and change the state of the environment. Sensors and actuators can be programmed 

individually or using rules and policies to activate actuators based on sensors data. These 

devices can also be integrated with other technologies and be connected to the Internet, 



13 

 

greatly expanding the possibilities on how Smart Homes can be used to help people to stay 

home longer. Nowadays with these and other advances on sensors and actuators technology, 

pervasive computing is achievable.  

There is a growing need for efficient techniques to be able to program these pervasive 

spaces [18]. One of the main limitations found in today's pervasive spaces is that the 

interconnection of their devices is very ad-hoc creating issues like scalability, the need for 

numerous and repetitive tests, and difficulties to integrate new technology. These issues have 

raised the need for software and hardware middleware solutions [19]. It is especially 

important to decouple the programming part from the physical-space and to allow different 

devices to integrate easily into the pervasive space. Several software standards going in this 

direction have emerged such as UPnP [20], Jini [21], and OSGi [22].  

Other researchers have focused on hardware-based solutions. They have studied how to 

provide computing capabilities to sensors, actuators, and appliances via “smart-plugs" or 

some other innovative interface [23]. These interfaces make possible the interaction between 

an application and the physical device it controls. The hardware devices usually have a 

software service that controls the sensors, actuators, or appliances attached to it. The purpose 

is to make the developers’ life easier as they can focus on the application functionality and 

leave tasks like wiring and physically connecting the sensors to other engineers. These 

software and hardware based solutions try to reduce the learning curve in order to eventually 

have other domain experts such as psychologist, physicians and the owner of the pervasive 

space to develop their own custom applications and control different devices without 

requiring them to learn the  different programming models used to control these devices. 

There are several Smart Home projects across the United States and the world. At Iowa 

State University, the smart home research lab [24] has been proactively investigating 

different topics on smart homes technologies, service-oriented solutions, and security and 

privacy. Another project is the Gator Tech Smart Home [25] developed by the University of 

Florida. This project focuses on overcoming the challenges of integrating new technology 

into a pervasive environment. For this purpose, they developed a middleware sensor platform 



14 

 

called the Atlas platform [26]. This platform consists of hardware nodes, firmware and 

software middleware. Each node consists of three layers: the processing layer, the 

communications layer, and device connection layer. These layers are swappable and they 

provide services that allow controlling devices via software services. This sensor middleware 

platform is useful for context representation as services can return concepts such as “open”, 

“humid”, or “72F” instead of raw data from sensor readings. 

Another Smart Home project is the aware home at Georgia Tech [27]. This project is an 

environment designed to learn information about itself and its inhabitants. The aware home 

has two identical independent living spaces where inhabitants live in one floor while 

prototyping and experiments takes place in another floor. This is a project intended to help 

elderly people as well. They built a prototype lab that resembles a house enhanced with 

technologies such as RFID tags and readers, sensors, and video cameras. They put special 

emphasis on context understanding via sensors and ways on how the computers at home can 

make use of this context information. They also study how to develop better context-aware 

applications closing the gap between sensed data and the applications that use it. In the aware 

home, there are wearable computers and intelligent environments that can learn the patterns 

of the inhabitant and perform activities on their behalf. They deployed a smart floor that can 

detect the location of a person by creating a ground reaction force (GRF) profile. The GRF 

profile computes a pattern of the footsteps of a person and predict with a 90%accuracy rate 

who is the person walking. One example of a context-aware application they developed is the 

Finding Lost Objects. They attach RFID tags on the objects and track the location of the 

person. Using this information, they can estimate the last position of the object before it got 

lost. The aware home project has a human-centered component that supports social 

connection among elderly and their family members. 

The University of Washington has a project called the assisted cognition project [28]. 

Their interdisciplinary effort aims at helping persons with the Alzheimer disease. They study 

the relationship between the physical limitations and the environment. They work under the 

premise that a person with Alzheimer disease might be able to perform certain tasks in a 

familiar environment but the same tasks would become very difficult under an unfamiliar 



15 

 

environment. Their goals are to (1) use sensors to get an individual’s location and 

environment information (2) learn and interpret their every-day behavior (3) offer help. Their 

interdisciplinary approach have the following advantages: (1) they have real data from real 

patients not relying on simulations (2) they collaborate with experts on elderly care (3) they 

test their system with a real population. They present two examples of assisted cognition 

systems. The first one is the activity compass, that is a tool to help direct a disoriented person 

to their destination using GPS and indoor sensors. They use this data to construct a high-level 

model of the person's activities. It does a plan recognition that determines if a deviation from 

the normal behavior should be interfered or not. Their second application is the adaptive 

prompter that is inspired in the fact that an Alzheimer patient might be unable to perform 

complex tasks but can perform simple tasks successfully. The prompter guides the person to 

perform a set of simple tasks that aggregated makes the complex task. They do it by 

capturing the sensor’s data and detecting what the patient is doing then model and predict 

what the patient is trying to do, and offer visual or audible assistance when necessary. 

2.2  Web Services 

A Web Service (WS) is a platform-independent, loosely coupled, self-contained, 

programmable, web-enabled application that can be described, published, discovered, 

coordinated and configured using XML artifacts for the purpose of developing distributed 

interoperable applications [29]. The idea of WS is to provide the means so that different 

clients under different platforms can use the application provided. WS follow the SOA 

paradigm by separating the service specification from the service implementation. WS uses 

XML for specifying its service interface. The transport protocol used by WS is HTTP. By 

using these protocols, WS achieve platform-independence. Any programming language that 

supports WS can provide the service implementation. WS uses different XML protocols to 

describe it public interfaces and bindings, with the more important of these being SOAP, 

WSDL, and UDDI [3]. The OASIS consortium is in charge of driving and overseeing these 

WS protocols. More details on these protocols are discussed below. 

The first fundamental protocol of WS is the Simple Object Access Protocol (SOAP) [29]. 

WS exchange structured information using the SOAP protocol messages. SOAP uses special 



16 

 

XML tags to format the content of these messages. A SOAP message is essentially an XML 

document consisting of three components: the envelope, the header, and the body. The 

envelope describes what is in the message and how to process it. The header contains 

processing and control information. The body contains the actual message.  

The second fundamental WS language is the Web Service Description Language 

(WSDL) [29]. WSDL describes WS as a collection of communication end-points that can 

exchange messages. It details the interfaces exposed by the WS, the operations supported, the 

data exchanged, and how to bind and access the WS. An XML specification schema defines 

the WSDL. A WSDL file is to a WS analogously what an interface is to a class in an object-

oriented programming language like Java. Several proxy code generators are available that 

takes as input WSDL files and produce source code for interacting with the service in the 

programming language used by the developer. These proxy code generators produce client 

code according to the service requirements and specifications as found in the WSDL file. 

The third fundamental protocol in the WS standard is the Universal Description, 

Discovery, and Integration (UDDI). This protocol offers a centralized registry for services 

that allow users to search and find them based on certain criteria. The literature compares 

UDDI repositories with the way a phone directory works. UDDI provides two basic 

specifications: the definition of what information to provide about each WS and an API to 

query and update the registry. The UDDI Business Registry (UBR) was an initiative to have 

a centralized repository where every institution could access, register, and search for all kinds 

of WS. Corporations like IBM, Microsoft, and SAP sponsored this initiative but it is no 

longer in service. Instead, institutions now have to create their own private UDDI registries. 

There exists several WS search engines websites but they do not support a UBR-like registry 

[30],[31]. 

Other languages and protocols exist that provide additional WS functionalities. These 

additional specifications provide different features and satisfy other needs that the main 

protocols SOAP, WSDL, and UDDI do not. Some of these additional specifications are WS-

Security, WS-Policy, WS-Notification, WS- Transfer, WS-Discovery, WS-BPEL, WS-



17 

 

Coordination, and WS-Management [32]. These other protocols are also XML-based and 

they are contained in the body of a SOAP message. Different needs and requirements 

motivate the use of these additional protocols. One example of a widely used protocol is the 

Business Processing Execution Language for Web Services (WS-BPEL). This language has 

become the de facto standard for compositions of WS. We study WS-BPEL and 

compositions based on this protocol in more detail throughout this work.  

Several tools are available to experiment with WS and manipulate these protocols and 

languages in a more user-friendly way. For the Java Developer, Eclipse has plug-ins such as 

the Web-Tools Platform (WTP) that allows the developers to work with WS using a 

Graphical User Interface [33]. As mentioned above the UBR is no longer available [34], but 

several open-source UDDI registry servers are available such as Apache jUUDI [35] and 

openuddi [36]. There are also APIs for manipulating UDDI such as UDDI4J [37]. 

For transmitting the XML-based protocols of SOAP, WSDL, UDDI, and others, the WS 

standard uses HTTP as its transport protocol. The choices of XML for defining the language 

and HTTP for transport, give these protocols advantages such as versatility, extensibility, and 

platform and language independence. The choice of XML as the basis for WS languages is 

appropriate, as XML is a widely accepted language, there are a number of tools available for 

parsing these files, it is lightweight, and it is firewall friendly. HTTP is the transport protocol 

used because it works well with the current Internet infrastructure. 

2.3  OSGi Services 

The Open Service Gateway Initiative (OSGi) is a consortium of more than 80 companies 

around the world whose mission is to enable the deployment of services over wide area 

networks to local networks and devices [4]. It specifies a layer with a common architecture 

for the executions of the services. This architecture maps onto the physical and logical 

components providing a service platform that service providers can use to deliver services to 

customers in their own environment. Some of the benefits of OSGi include platform 

independence, application independence, multiple services support, services collaboration 

support, security among different services from different providers, multiple network 



18 

 

technology, and simplicity. OSGi provides a new category of applications. It can connect to 

the Internet and execute services locally therefore certain services can use data from in-home 

attached devices as input. The architecture of OSGi consists of a service provider, gateway 

operators, Internet access, local network, and the devices. Some use cases for OSGi includes 

personal communications, energy management, security systems, alarm systems, health care, 

entertainment, information management, pay-per-use and synergistic services [38]. 

The OSGi main feature is its definition of a general-purpose, secure, managed Java 

virtual machine framework that supports the deployment of bundles. In OSGi context, a 

bundle is a set of resources all packed in a JAR file. Some resources are required while others 

are optional. The required resources are a special class called bundle activator, a manifest 

file, a Java service interface, and Java classes implementing the service. Additional resources 

include dependencies, other Java packages, and documentation. OSGi compliant devices can 

download, install, and remove bundles. Bundles can register services, import, or export Java 

packages. The framework is responsible for managing bundle related activities such as 

resolving dependencies, installing, starting, stopping, and updating them. The OSGi 

framework also provides a consistent programming model for bundle developers by 

decoupling the service specification from its implementation following the SOC paradigm 

and defining a SOA. Some of the basic OSGi services that the OSGi framework provides are 

the log service, the HTTP server, device access, configuration management, user 

management, and preferences [39]. Several commercial and open-source implementations of 

the OSGi framework are available such as Knopflerfish [40], Oscar [41], Eclipse Equinox 

[42], and Apache Felix [43]. 

OSGi is very suitable for programming smart environments such as the Smart Home 

because of its SOA support and its enhanced management of embedded devices. In literature, 

researchers prefer to use OSGi in this type of environment. For example, T. Gu et. al. in [44] 

provide a framework for developing context-aware application for pervasive computing 

using OSGi within Smart Home environments. They propose an ontology-based context 

model that leverages Semantic Web technologies and OWL (Web Ontology Language). They 

put it all together with a service oriented context-aware middleware (SOCAM) architecture 



19 

 

that includes services for context discovery, acquisition, and interpretation. Their key feature 

is their ability to reason about various contexts by using ontologies and first order calculus to 

describe formally the concepts in a particular domain. There are existing pervasive spaces 

that rely on OSGi technology such as the Gator Tech Smart Home [25] described previously. 

2.4  Services Composition 

Service composition is at the heart of the SOC paradigm. Most research in the service 

composition area has focused on WS, leading to the development of different approaches to 

accomplish this [3]. Some of the issues that arise with WS composition approaches are 

coordination, transaction, context, conversation handling, execution monitoring, and 

infrastructure. There are different scenarios that will motivate developers to perform service 

compositions. There are also a diverse set of composition methodologies that can be used 

such as static, dynamic, model-driven, declarative, automated, manual, and context based 

web service discovery. These issues and the different composition strategies have lead to the 

development of various service composition frameworks some of them manual, others semi-

automatic or fully automatic. Examples of these frameworks are e-flow, MAIS, MOEM, 

SELF-SERV, OntoMat-Service, SHOP2, WebTransact, and StarWSCoP. Unfortunately, no 

single framework solves all the issues, satisfies all the needs for automatic composition of 

WS, or provides all possible composition mechanism. Most of these frameworks work 

individually and focuses on a particular issue or technique reason why a comprehensive 

solution still needs to be developed [3]. 

Different approaches have been proposed and studied in order to achieve automated WS 

compositions. WS composition is an active research topic, as atomic WS might not satisfy 

certain needs but when combined with other services in a certain logical way, the composite 

service does. At this point, WS composition is beyond the human capability for several 

factors that affect the tractability of services such as the large number of services available, 

the dynamicity of services, and the increasing number of organizations developing different 

WS. Automating this process is what has motivated the development of different 

composition strategies.  



20 

 

Two examples of composition strategies are the use of workflows [45] and AI planning 

[46]. With the workflow approach, the system uses a provided workflow to locate those 

services that satisfies it. Several platforms that use the workflow techniques are EFlow and 

Polymorphic Process Model (PPM). With the AI planning approach, the developer provides a 

set of constraints and preferences and the system generates the flow of the composite service 

and finds the candidate services. J. Rao and X. Su in [46] focus more on the AI planning 

technique but they mention some workflow details as well. They present a general 

framework for WS composition. They state that all the composition schemes should provide 

the following: presentation of a single service, translation of the languages (from WSDL to a 

formal, logic language), generation of the composition process model, evaluation of the 

composite service (to choose the best one out of several compositions), and execution of 

composite services. They point out that only WS language that directly connects with AI 

planning is DAML-S (also known as OWL-S). Different approaches for AI planning 

composition include situation calculus, Planning Domain Definition Languages (PDDL), 

rule-based planning, and theorem proving. Some of the tools available that support AI 

planning service composition are SWORD [47]and SHOP2 [11]. Most of these frameworks 

use abstractions of services in their compositions, while in this work a framework that works 

with real services is presented. 

Automatic composition of OSGi service has been an active research topic of services as 

well. A. Wood et. al. presents in [48] a framework to achieve spontaneous compositions of 

OSGi services. Their framework provides functionality to handle availability of services, 

links to connect to the services and matching criteria for selecting the best available service. 

R. Redondo et. al. in [49] uses the WS-BPEL language to describe the workflow of a 

composition. They provide a framework that extends OSGi in order to support WS-BPEL 

files, locate the candidate services, and automatically create the OSGi bundle that 

implements the composite service. Nevertheless, their framework focuses on composing 

OSGi services only. J. Anke and C. Sell present in [50] a strategy for automatically 

composing OSGi services by first converting them to WS and afterwards use WS 



21 

 

composition techniques. Our work is different, as the services are used in their original 

implementation without the need for converting them to other architecture. 

Other researchers have focused on the problem of composing heterogeneous SOAs. C. 

Lee et. al. in [51] uses WS-BPEL for composite service workflow description, but allow 

OSGi and WS combinations in the composite. In their work, the developer must clearly 

specify in the WS-BPEL file what type of service they intend to use (OSGi or WS) as well as 

the binding information such as the URL of the WSDL file. Our work is different as there is 

no need to specify the service type and binding information, as this information are 

automatically gathered from a service repository. We also define our own service 

composition language inspired on WS-BPEL, but ours is simpler and provides SOA-

independence. The fact there is no need to provide the details about the particular services, 

allows our composition framework be extended to support dynamic bindings and 

heterogeneous SOAs. A similar approach is followed by technologies such technologies as 

the Service Composite Architecture (SCA) [51] found in frameworks such as Apache 

Tuscany [52], Fabric3 [53] and the Newton Framework [54]. The basic unit in SCA is a 

component that is a service developed using any supported SOA such as OSGi, Spring, and 

WS. SCA offers a framework in which developers can create composites using these 

components, developed under different platforms. Components use tags and annotation in 

their source code for intercommunication. To create composites, SCA use a special XML 

language Service Component Definition Language (SCDL), that takes the tags of the 

components and interconnects them. The problem with this technology is that the services 

code has to include these tags and annotations in order to work within the SCA framework. 

This limits the services that can be used to only those developed following the SCA 

specification. In our work, we strive at using the services in their original implementation 

without the need to change the source code or add tags or annotation, allowing reusability of 

services already available. 

 

 



22 

 

2.5  Formal Software Analysis 

Formal software analysis is a mathematically well-founded automated technique to reason 

about the behavior of a software system with respect to a specification of soundness and 

unsoundness behavior. As software becomes more complex, using formal verification serves 

as an essential tool to ensure its correctness. There exist different techniques and trends in 

formal software analysis like model checking [13]. The technique of model checking consists 

of a model M of the system consisting of state transitions and a set of properties P to check. 

The checker will visit all possible paths of state transitions to see whether P holds on model 

M.  

Other techniques to check formally the correctness of systems are abstract interpretation 

and the deductive method. Abstract interpretation instead of using real data it uses over 

approximation or under approximation. Abstraction of data is possible by looking at the sets 

and not the individual values. If two pieces of data belongs to the same set before an 

operation and after it, then this set can be used instead of the specific values. This greatly 

simplifies the model by reducing the range of values from where to choose to only values 

that represent entire sets [55]. The deductive methods [56] define the sets P, C, Q where P is 

a pre-condition, C is the program, and Q is the post condition. Given P, C and Q the checker 

verifies if running C with preconditions P results in Q. A disadvantage of this method is that 

it might require a lot of manual intervention to come up with the proper P, so that after 

executing C, results in Q. 

The main problem of using formal methods techniques is the state explosion problems, 

where the number of possible states can increase rapidly. Several literature works deal with 

the state explosion problems and with infinite possible values of data by using different data 

taming techniques. One of this taming techniques is predicate abstraction [57] in which the 

values of the variables are mapped into a finite, smaller set of abstract values usually 

Boolean. The heap abstraction technique tries to reduce the number of nodes in a graph by 

moving into a single summarizing “super node” all those nodes that are not pointed by a 

variable in the system. The symbolic execution technique [58] executes the program using 

symbolic data and ranges instead of using actual data values. If the conditions are satisfied 



23 

 

the execution continues down that path, otherwise it stops. The partial order reduction 

technique [59] tries to eliminate interleaving among independent transaction in different 

threads that will not affect each other. Heuristic search technique tries to navigate faster a set 

of desired states. Another technique is the assume-guarantee, which analyzes that given an 

assumption, if certain property can be guaranteed. As noticed in literature we can find a lot of 

different approaches, tools, and future directions but rarely they evaluate their performance. 

Also because of particular implementation details what is a good configuration for a tool or a 

techniques it is not for the other.  

There are several tool used for model checking that we are interested in using among 

them SPIN, Java Pathfinder and, FIONA. The SPIN model checker is a widely used model 

checker that perhaps is one of the most popular [60]. SPIN verifies systems modeled in 

PROcess MEta LAnguage (PROMELA) to see if they satisfy certain properties specified 

using linear temporal logic (LTL). SPIN also checks these PROMELA models for standard 

programming errors such as deadlocks and unhandled exceptions. There are several tools 

developed on top of SPIN, one of the Java Pathfinder (JPF) [48]. NASA developed JPF in 

their effort to produce error free code for their space, aviation, and robotics applications. JPF 

converts Java code into a PROMELA model, verifies a set of basic properties, and allows the 

developer to provide custom properties to check them as well. JPF suffer from the state 

explosion problem, posing limitations in the number of commands supported and the length 

of the programs it can translate. At this point, it only translates a handful set of Java 

commands and it runs efficiently with programs with up to a few thousands lines of code. 

Another model checking tool studied in this work is the BPEL2oWFN [61], which is a tool 

that converts a WS-BPEL files into open Work Flow Nets (oWFN). An oWFN is a special 

type of graph for modeling service processes such as those specified using WS-BPEL. The 

FIONA model checker [62], verifies properties of these oWFN such as controllability. 

Therefore, BPEL2oWFN can be used to produce the oWFN and Fiona to verify it. 

Uses of model checking are explored to ensure compliance with system requirement and 

corresponding laws. One of the main contributions of this work is a framework for 

automatically create composite services of heterogeneous SOAs. Some of these services 



24 

 

handle sensitive data or control delicate systems. We need to ensure that these services 

function properly, that their interactions are safe, and that they comply with the appropriate 

laws such as those for privacy of personal and medical data. One of the laws in the United 

States that a Smart Home system must comply with when handling sensitive data is the 

Health Insurance Portability and Accountability Act (HIPAA) [13]. In literature, there are 

different efforts to define this and other laws using formal languages so that a computer can 

interpret it and check it [63]. This process is known as formalizing the law and is a necessary 

step as sometimes the language of the law can be ambiguous or subject to interpretation by a 

law, or medical expert. Such ambiguities make it difficult for computer systems to check for 

compliance. However, in our work an effort is made to ensure that our Smart Home does 

comply. 

2.6  Wireless Mesh Networks 

A wireless mesh network (WMN) is a dynamically self-organized and self-configured 

network with the nodes automatically establishing an ad hoc connection and maintaining the 

mesh connectivity [60]. Some advantages of WMN are low up-front cost, easy network 

maintenance, robustness, reliable service coverage, and compatibility with ad-hoc and other 

networks. Some WMN applications include broadband home networking, community 

networking, building automation, high speed MAN, and enterprise networking.  

There are two types of nodes in a WMN: mesh routers and mesh clients. Wireless mesh 

routers have conventional routing capabilities plus support for mesh networking. The 

wireless mesh routers design allows them to have multi-hop communication, allowing the 

network coverage to be expanded. Wireless mesh routers have multiple wired and wireless 

network interfaces attached to them to communicate data among heterogeneous network 

protocols such as Ethernet, Wi-Fi, Bluetooth and Zigbee [64]. Wireless mesh router are 

assumed to have limited or no mobility at all. The nodes with limited mobility form the mesh 

backbone to which clients can connect. 

A wireless mesh client is a network node with a simpler hardware and software platform. 

PDAs, cell phones, and laptop are examples of mesh nodes [65]. Sophisticated mesh clients 



25 

 

may also have routing capabilities. For example, a typical laptop equipped with Wi-Fi sends 

and receives data but does not route packets. A laptop enhanced with mesh routing 

capabilities will also route other client’s packets, possibly expanding the network and 

strengthening the coverage. These mesh client with multiple network interfaces diversify the 

capabilities of ad-hoc networks.  

There are three types of WMN: the infrastructure also known as backbone, the client, and 

the hybrid WMN. The infrastructure or backbone WMN is a network with a set of wireless 

mesh routers that have limited mobility and to whom clients connect. A Client WMN is more 

like a conventional ad-hoc network, where clients connect in a peer-to-peer fashion. Their 

main difference is that as part of the end-user requirements client nodes must perform routing 

and self-configuration functions. The third type of WMN is the Hybrid one that is perhaps 

the most popular one. The advantages of the hybrid design are that mesh routers and mesh 

clients can both perform routing functionalities, improve connectivity and coverage, and 

support ad-hoc networking with self-forming, self-healing, and self-organizing capabilities. 

The hybrid WMN forms the multi-hop wireless connectivity by having a backbone of 

wireless mesh routers that provide stability to the network. The end-nodes that may have 

mobility have the capability of increasing the coverage area and expand the network. Some 

of the challenges with WMN, especially the Hybrid, are scalability and performance. These 

problems are especially noticeable as the number of nodes in the network or the number of 

hops used to transmit a message increases. An interesting property of WMN is that they are 

not a stand-alone nor a new type of network, rather they are compatible with current wireless 

networks but combines them into a single infrastructure. WMN are used in our experiments 

to test the performance of our services and of the composition framework, as WMN provides 

an infrastructure where network resources are constrained. 

  



26 

 

CHAPTER 3.  FUNDAMENTAL SERVICES IN PERVASIVE 
ENVIRONMENTS 

 
 

3.1  Introduction 

Throughout our research, we have studied several strategies and solution in Service-Oriented 

computing, software middleware solutions and services for pervasive environments like the 

smart home. Our finding such as requirements elicitation, design, development, testing, and 

results have been published in a series of conference papers over the last few years. This 

chapter provides modified versions of these papers presented in the order that our work 

progressed over time. 

The paper entitled “MISS: Medicine Information Support System in the Smart Home 

Environment” [66] outlines a medicines management system that integrates the doctor, the 

pharmacy and the smart home. MISS ensures safety of medications intake by checking 

conflicts among new prescriptions with previous medications, medical conditions, and food 

items. The design, the model of the conflicts and a prototyped implementation are provided. 

The paper entitled “Service-Oriented Middleware for Smart Home Application” [67] 

documents our first works with having a middleware solution for simplifying the 

development and deployment of new services. It focuses on providing software-based 

service-oriented solutions especially for managing sensors. A layered architecture is 

presented with different demos that take advantage of the service-oriented middleware. The 

paper entitled “Composition of Services for Notification in Smart Homes” [68] documents a 

comprehensive composite service for giving notifications using various communication 

means. Repetitive task for communications are bundled into services, which are then 

composed to form the notification service. Several examples that show how the composite 

service is used along with the architecture for composite services in general are presented. 

The paper entitled “Using Web Services for Medication Management in a Smart Home 

Environment” [69] extends our previous works mostly focused on a single SOA by 

introducing Web Services. This paper introduces the idea of combining services from 

heterogeneous SOAs, integrates current systems, and provides interoperability by using WS. 



27 

 

Sensitive data among subsystems is securely transferred by using secure WS for 

communication purposes as shown in the prototyped implementation. 

These services, composites, and middleware solutions were the precursors of the 

heterogeneous SOAs composition framework presented in this thesis. Checking the correct 

services interaction and managing sensitive medical data guided us into the use of combined 

model checking techniques for checking safety, also presented in this thesis. Next, the 

modified version of MISS [66] is presented. 

 
3.2  MISS: Medicine Information Support System in the Smart Home 

Environment 

A paper published in Proceeding of the 6th International Conference on Smart Homes and 

Health Telematics, 2008 

José M. Reyes Álamo, Johnny Wong, Ryan Babbitt, Carl Chang 

 

3.2.1  Abstract. 

The Smart Home uses different technology to facilitate the lives of the resident and is 

especially useful for assisting the elderly and persons with special needs. One area where this 

population would benefit is managing their prescribed medications. This section presents the 

Medicine Information Support System (MISS) which integrates the patient’s information to 

assist with the prescriptions management. The system checks for conflicting medicines, 

health conditions and food items. The data generated is used to feed other subsystems in the 

Smart Home such as the reminder and medicine inventory. A formal model is introduced for 

conflicts checking. The three main entities: doctor, pharmacy and Smart Home use this 

model to detect their particular set of conflicts which ensures that conflicts involving the 

entire context will eventually be detected. The design uses this model as its basis for conflict 

checking. The prototyped implementation of the entire system is based on Java. 

 
 



28 

 

3.2.2  Introduction 

The Smart Home is a house that integrates different technologies for facilitating the 

execution of daily tasks. Sensors and actuators play a major role in assisting in the 

automation of these tasks. Smart Homes, with modern technology designed especially for the 

elderly and persons with special needs, have been a research subject in the last few years. 

One main motivation for this research is that the baby boomer generation is reaching the 

retirement age and the need for assistance increases as they grow old. 

One of the areas in which the elderly and persons with special needs would need 

assistance from the Smart Home is in their medicine intake management. Keeping up-to-date 

with the prescriptions can be challenging due to complicated medicine names, several 

simultaneous medications, similar instructions for medication intake for different medicines, 

and being aware of expiration dates and detecting conflicts. 

We propose MISS: Medicine Information Support System in the Smart Home to address 

this issue. A step-by-step analysis of the process for getting prescriptions today is presented. 

This analysis helped identifying important requirements for our system. As a result we come 

up with a formal model which is used for detecting errors and conflicts among sets. These 

sets are the medicines, food items and patient’s health conditions and the system checks for 

conflicts among those. This system generates data which can be used by other subsystem in 

the Smart Home. The reminders system which tells the patient when to take the medicines is 

one of these subsystems that benefits from MISS. Also MISS data is useful for preparing and 

updating a personalized calendar and providing individual assistance for each user at the time 

of taking the medicine.  

There have been previous efforts for helping individuals with the management of their 

prescriptions. Some related work includes the Magic Medicine Cabinet (MMC) which is 

presented in [1]. In that project the author mentioned that today’s smart devices are designed 

to perform the device tasks plus connecting to the Internet. This converts the appliance to a 

device similar to a personal computer which also can go online. MMC is equipped with a 

facial recognition software, RFID smart labels, vital signs monitor and voice synthesis. The 



29 

 

MMC assists the residents of the house by giving personalized reminders, detecting when a 

resident take the wrong medicine, and measure some vital signs. The MMC is a great idea 

but their product is not designed particularly for the needs of the elderly population. They 

also do not give details of how it interacts with the patient’s pharmacy, doctors and health 

care providers even though the MMC claims it can. We bridge this gap by describing a 

system in which the Smart Home interacts with the patient’s doctor, pharmacy and health 

care provider. Such a system will be useful for checking conflicts and errors in the process of 

dispatching medicines, will facilitate giving reminders, and will increase compliance with 

medication intake [7].  

The Smart Medicine Cabinet [2, 3] and the Smart Box [4, 5, 6] extends the Magic 

Medicine Cabinet by using passive RFID technology and Bluetooth, to synchronize the state 

of the MMC using a cellular phone. The cellular phone contains information to be used to 

give reminders and to know the state of the medicine cabinet and its content. They assumed 

that the medicine containers have RFID tags and the Smart Medicine Cabinet (SMC) can be 

automatically updated. When the cell phone is within the SMC range, a synchronization 

phase takes place keeping user intervention to a minimum. Nevertheless this still requires the 

user to carry the cell phone to the synchronization area as well as to carry it to the pharmacy. 

Our system presents a simpler synchronization process from the patient’s point of view that 

will not require any intervention from the patient. Also there will be no need of carrying any 

device such as a cell phone giving our system another advantage. 

Technology available for automatic dispensing of prescribed pills can be found in [10, 

11]. All these products have some common features. In these machines either the resident of 

the Smart Home or a caregiver has to load the automatic dispenser with the medications, 

enter the times that the medicine should be taken, remove the medicines after the system 

reminds the patient for taking them and repeat these actions for other prescriptions. The 

disadvantage is that these machines require a lot of manual action. 

All these products has some outstanding features that facilitate the task of taking 

medicines [10, 11], ensuring that the right medicine is taken at the proper time [4, 6] and 



30 

 

giving reminders to the patient [8, 9]. Also these products facilitate to some extent the 

detection of errors during the process such as when the medicines are not taken. But these 

products by themselves do not address the need of managing medicine information as they 

still require a lot of manual input from the patient. In [13] a system which uses this 

technology for helping patients with dementia is presented. Our system is similar in which it 

uses available technology to help patients with their prescription intake. Our system is 

different as it involves the doctor, pharmacy and health care providers at early stages. Also 

we provide a formal model of the system to ensure it is safe, secure and correctly detects the 

conflicts. Also MISS presents a system in which the patient does not need to enter any data 

manually and can be integrated with existing reminder systems such as outlined in [13]. The 

following sections will describe more details of our system MISS. 

3.2.3  Current Technology and System Requirements 

Describing the process of a person who goes to the doctor and receives a prescription will 

help to identify important system requirements. This process can be broken down into the 

following steps: 

1. The person visits the doctor. 

2. The doctor prescribed some medicines. 

3. The patient goes to the pharmacy and gets the prescribed medicines. 

4. The patient goes home and intakes the medicines. 

 

Medicines intake involve the following steps:  

4.1 Wait for the next dosage time 

4.2 Locate the medicine container 

4.3 Open the container  

4.4 Extract the appropriate amount of medicine   



31 

 

4.5 Intake the medicine 

4.6 Close the prescription container 

4.7 Return the container to the medicine cabinet 

 

Several of these steps have been automated with existing products. For step 4.1 and 4.2 a 

Smart Box or Cabinet can help with the reminders and location of the medicines [1, 2, 4, 6]. 

Using automatic pill dispensers [10, 11] can help in opening the medicines and extracting the 

right amount as indicated in steps 4.3 and 4.4. These are some examples on how current 

technology can be used for the purpose of medicine intake but there is still room for 

improvement. One of the steps which can be further improved is 4.1 where the patient 

“waits” for the next dosage time. The elderly and persons with special needs might forget 

when the next dosage is [13]. A system which takes care of reminding them the time of the 

next dosage will help to increase compliance with medicine intake [7]. Another problem 

facing this population is to locate the medicine as required in step 4.2. It is possible that they 

do not remember where the medicine containers were placed last time. Therefore the patient 

will benefit from a system that will help locating the medicine containers. The automation of 

a reminder system will require input of the prescription’s specific information to be able to 

give the proper reminder at appropriate time. To enable the location of medicines, a unique 

identifier for the prescription containers is needed. This will facilitate tracking the object 

within the Smart Home and distinguishing it from similar products. An efficient mechanism 

to detect and locate the medicine container is required. 

Entering the medicine information manually by the resident or a health care provider for 

these systems is not feasible. Human errors and typos can occur. Therefore the details about 

the prescription such as the name, dosage, conflicting medicines, conflicting food, patient 

conditions and other warnings should be entered by an expert and automatically transferred 

into the Smart Home system. This way intervention from the resident is minimal so this 

feature is very important. All this automation will require a reliable system which will 

accurately compute the existence of conflicts among the prescribed medicines, the food items 



32 

 

available at the Smart Home, and the patient health conditions. This data must be accurate as 

it is expected to be used as input for other subsystems in the Smart Home. The design and the 

prototyped implementation of the model show how these tasks can be accomplished by our 

system requiring minimum intervention from the patient. The next section shows the MISS 

system and design. 

3.2.4  MISS System and Design 

This section has a high level description of the MISS system, it subsystems and their 

interactions with each other for managing the medicines and detecting conflicts. At a very 

high level the system should do the following: The patient visits the doctor and gets a 

prescription. The prescription details are inputted into the system at the doctor’s office. The 

system will check for conflicting medicines and heath conditions based on the patient’s 

record that the doctor has. The patient will indicate from which pharmacy the prescription 

will be picked up. The doctor then will make the prescription’s data available to that 

particular pharmacy. The pharmacy prepares the prescription based on the doctor’s 

prescription. The pharmacy will double check for conflicting medicines and health conditions 

based on the patient’s record of the pharmacy. The patient picks up the medicines. The 

patient goes to the Smart Home and in a very convenient way, by scanning the RFID-enabled 

prescription containers into a RFID-reader, will indicate to the Smart Home system the 

presence of the new medicine. The Smart Home will update its medicine inventory database 

accordingly and makes a final check for conflicts among medicines, health conditions and 

food. MISS consists of three main subsystems: The Doctor Subsystem, the Pharmacy 

Subsystem and the Smart Home Subsystem. These subsystems are operated by four main 

actors which are: the doctor, the pharmacy, the patient and the Smart Home. A trusted third 

party medicine’s database that defines the conflicts is also used. A diagram of the system is 

shown in Figure 3.1. The next paragraphs describe each subsystem design more detailed. 

 



33 

 

 

Figure 1 - Medical information system diagram 

 

 

 



34 

 

The doctor subsystem is where the process starts. During the visit to the doctor, he checks 

the patient and prescribes some medicine. During the consultation the prescription details 

such as the name of the medicine, dosage, etc. are inputted into the system. Our system 

checks for conflicts and also facilitates the communication between the doctor’s office and 

the patient’s preferred pharmacy. For doing this the options are to have the doctor’s office 

directly communicate with the patient’s preferred pharmacy and send the prescription data or 

making the prescription data available for a pharmacy that the patient will choose later. 

Consider the first case when the patient chooses a preferred pharmacy to pick up the 

medicines. The person interacting with the system at the doctor’s office will use a unique ID 

such as an assigned patient number, to access the patient’s information. This information is 

stored at a local patient’s database, available only to the doctor. The information extracted 

from the database contains data such as previous prescriptions and health conditions. To 

ensure that the prescription would not have any adverse side effect on the patient the 

information extracted from the database will be checked against the data of the new 

prescription. After carefully checking for conflicts with medicines and health conditions, if 

no conflict is found the prescription data will be sent to the patient’s preferred pharmacy 

through a secure channel. The doctor’s office will also issue prescription document 

customized for that particular patient and prescription. This prescription will be in the form 

of printed-RFID tag which will be used later by the pharmacy module. 

In the second case in which the patient will decide later from which pharmacy the 

prescription will be picked up, the process is similar. At the doctor’s office the prescription 

information will be entered into the system, the patient’s data will be accessed and check for 

conflicting medicines and health conditions as in the previous case. But here the doctor’s 

office will not be sending the data to any pharmacy. Instead a printed-RFID prescription will 

be issued. This will allow the pharmacy’s system to download the prescription data from the 

doctor’s office later on. The main difference among the two approaches is when the data 

arrives to the pharmacy. In the first case it arrives immediately in the second case when the 

patient gets into the pharmacy. Now let us consider how the pharmacy subsystem uses this 

data. 



35 

 

We now describe the pharmacy subsystem. Based on the doctor’s subsystem operation 

we assume the following two starting scenarios for the pharmacy subsystem: There is a 

chosen pharmacy which receives the prescription’s data from the doctor’s office or the 

patient will choose a pharmacy later and bring the printed-RFID prescription. 

Consider the first scenario in which the patient chose a preferred pharmacy at the doctor’s 

office. The pharmacy will receive the prescription’s data with the necessary details when the 

patient is still at the doctor’s office. The pharmacist can start preparing the prescription 

immediately using this information. The pharmacy will issue the prescription in special 

containers. These containers will look like regular ones with the difference that they will be 

equipped with RFID tags. These RFID tags will allow the system to uniquely identify the 

particular medicine with all its related data. This tag-ID and the related information will be 

stored in a database that will be used later by the Smart Home module. 

Before assigning the RFID tags for the container, the pharmacy system should have 

available a history of the patient and previous prescriptions dispatched from that pharmacy. 

The system will check that the particular RFID tag has not been assigned maintaining 

uniqueness. After assigning unique IDs to each prescription, the system is ready to prepare 

the data that will be used for updating the Smart Home subsystem. This data consists of two 

important pieces: the patient independent and the patient dependent information. The patient 

independent information contains the description of the medicine, possible side effects, 

different conflicts and recommendations. The patient dependent information is the historical 

data that the pharmacy has about the patient. This information will be checked in a similar 

way as it was checked in the doctor’s module. The system will be looking for possible 

conflicts with other medications, and health conditions to make sure it is safe to take that 

particular medicine. This double check is necessary as the doctor might prescribe a medicine 

which creates a conflict with a medicine previously picked up at that pharmacy.  

At this point the pharmacy is ready to receive the patient. When the patient arrives he 

shows the printed-RFID prescription the same way they are used to do it now. The difference 

is that the prescription ready or in process as the patient chose the preferred pharmacy when 



36 

 

still at the doctor’s office. The printed-RFID prescription is scanned in a RFID reader. At this 

point the system will compare the data in the RFID tag with the data received from the 

doctor’s subsystem. If no incongruence is found, the medicine is dispatched. Otherwise, the 

pharmacist is alerted and contacting the doctor’s office is recommended. One advantage of 

our system is that it reduces the waiting time at the pharmacy as pharmacists can start 

preparing the prescription when the patient is still at the doctor’s office. This is an excellent 

feature especially for the elderly population that might need their medicines as soon as 

possible or want to avoid long waits or several trips to the pharmacy. Another benefit of our 

system is the double layer of security checking for conflicting medications and health 

conditions.  

In case that the patient did not choose a preferred pharmacy the waiting time will increase 

but the process will be almost identical to the one described previously. Instead of having the 

prescription ready or in process, the patient starts the process of getting the prescriptions 

when arriving into the pharmacy. At the pharmacy counter the pharmacist will receive the 

printed-RFID prescription and at that moment the pharmacy system will download the 

prescription data from the doctor’s office and perform all the safety checks for conflicting 

medicines and health conditions described in the previous paragraphs. At this point whether 

the patient pre-selected the pharmacy or not, the medicines should be ready and the patient 

can go home. The process for updating the system in the Smart Home will be very simple 

from the patient’s point of view as the underlying system will take care of all the details. 

At the Smart Home subsystem, the patient finally arrives to the Smart Home and updates 

the subsystem with the new prescription’s data. Either the patient or a caregiver will be in 

charge of updating the Smart Home system by scanning each prescription container with an 

RFID reader. After scanning the prescriptions the medicines can be placed in Smart Medicine 

Cabinet [2, 4] or loaded into an automatic medicine dispenser [10, 11] or a combination of 

both technologies for storing the medicines. 

At this point the Smart Home system will read the RFID-tags of the prescription 

container. These tags will contain information indicating from which pharmacy the patient 



37 

 

picked up the medicines. The Smart Home will have a secure communication link to the 

pharmacy. A query will be issued to the pharmacy to retrieve the prescription details and 

download this data to the Smart Home subsystem, similar to the process of downloading the 

data from the doctor to the pharmacy. A final safety check for conflicting medicines, health 

conditions and food items will take place. This check is necessary as the patient might be 

picking up the medicines from different pharmacies, prescribed by different doctor. The 

check for conflicting food will be performed at the Smart Home level as it is the subsystem 

with the database of available food items. 

If a conflict is detected then a caregiver will be informed. If no conflict is detected then 

with all this information, the Smart Home System will update its medicine inventory and 

provide data to other subsystems such as the reminders and personalized calendar. All these 

tasks that MISS perform will definitely help the elderly and persons with special needs that 

have a hard time checking all these safety issues by themselves. 

 

Figure 2 - Use cases and actors 



38 

 

The more important use cases and actors for the MISS system are shown in Figure 3.2. 

The system will have four main actors: the doctor, the pharmacy, the patient and the Smart 

Home. From the figure we can see that the doctor actor is in charge of starting the system by 

preparing the prescription and make it available to the pharmacy. The doctor actor will also 

be the first one to check for conflicting medications and health conditions. The pharmacy 

module then will use the information provided by the doctor’s office to prepare the 

appropriate prescription. It will also check for conflicts and will make sure to validate that 

the data received from the doctor’s office is correct. The patient actor will scan the RFID 

enabled prescription containers to feed the system with the information necessary to obtain 

the prescription details from the pharmacy’s database. The Smart Home actor will then 

download the prescription’s data from the pharmacy and will use it to update it medicine 

inventory and support the reminder, calendar, notification and location and tracking 

subsystems. To ensure the accuracy and correctness of the conflict detection a formal model 

is proposed in the next section. 

3.2.5  Proposed Model 

The medicine management system should be accurate, reliable and provide safety by 

detecting and informing conflicts. A conflict occurs when a medicine should not be taken 

together with another medicine, if the patient has certain health condition that the medicine 

could aggravate or the medicine interacts with certain food items. We are assuming that a 

trusted third party defines the conflicts and these definitions are publicly available for the 

model and the system to use them. To check that these kind of conflict do not occur we 

present the following model whose main components are the set of medicines M, the set of 

food items F and the set of medical conditions C. The set of food items F needs to be 

considered as some food should be avoided when taking certain medicine. The set of medical 

conditions C needs to be considered as some medicines cannot be taken if the patient has 

certain conditions. 

Now we define several functions that will act over the set of medicines and return useful 

information. The first function is conflicting_medicines: M�P(M), where P(M) is the 

powerset of the set M, which determines the set of conflicting medicines. The next function 



39 

 

is conflicting_food: M�P(F) where P(F) is the powerset of the set F,  which will return the 

set of conflicting food items. The other function is conflicting_conditions: M�P(C), where 

P(C) is the powerset of the set C, which will return the set of conflicting health conditions. 

Given these sets and function we define the Medicine System Model as follows: 

Definition 

A Medicine System Model S consists of the following sets: 

− M, the set of medicines 

− C, the set of medical conditions 

− F, the set of food items 

− D, the doctors, hospitals or clinics the patient visits 

− P, the set of pharmacies at which the patient gets prescriptions 

− H, the patient’s Smart Home 

 

With the following functions:  

− conflicting_medicines: M�P(M) 

− conflicting_conditions: M� P(C) 

− conflicting_food: M� P(F) 

 

We want this information to be useful for a particular patient p. Each patient will be 

represented by a tuple. 

p = (id, Mp, Cp, Fp, CMp, CFp, CCp). The id entry will uniquely identify the patient. Let 

�� � �, represents the subset of medicines prescribed to patient p. Let �� � � represent the 



40 

 

health conditions that patient p has been diagnosed. Let �� � � represent the food items that 

patient p has available. Let CMp represent the subset of medicines that are currently in 

conflict with the medicines prescribed to patient p and therefore should not be prescribed to 

that patient. CMp can be computed as � �	
��
��

�_���
�

��������� . ��� CCp 

represents the set of medical conditions that the patient should not have in order to take the 

medicine safely. CCp can be computed as � �	
��
��

�_�	
�
�
	
�������� . Let CFp 

represents the set of food items that the patient should avoid while taking the medicines 

prescribed to him. CFp can be computed as � �	
��
��

�_�		���� ���� .  This will help 

to detect when a patient is diagnosed with a health condition and is taking a medicine which 

is in conflict, or when a medicine is prescribed which is in conflict with an existing health 

condition. This way the doctor or caregiver can make better decisions. 

Now we describe how to construct these sets that complete the patient information. Given 

a new prescribed medicine m, to a patient p, the medicine has some data related to it like the 

unique drug id, active ingredients, milligrams, and so on. The medicine data can be obtained 

from the Food and Drug Administration (FDA) [14], or from the Physician’s Desk Reference 

(PDR) [15]. These entities are trusted third parties who define the conflicts among medicines, 

food and health conditions. These definitions of conflicts will be used in our model and 

system. Using the data of medicine m, we compute �� � �	
��
��

�_���
�

����� , 

which returns the set of conflicting medicines with medicine m. We check if there is a 

conflict by examining if �� �  �� �    and � �  ��� �   . If both conditions are true 

then we take ��� �  ��� !  ��, to update the set of conflicting medicines for patient p. 

We do a similar processing for the conflicting conditions. We compute the set �� �

�	
��
��

�_�	
�
�
	
���� which returns the set of conflicting conditions with that 

particular medicine. We then check for conflicts by taking �� � �� �  . If condition is 

true, we update this information for the patient by computing ��� �  ��� !  ��. Similarly 

we compute the set �� � �	
��
��

�_�		����  which will return the set of conflicting 

food items for that particular medicine. We then check for conflicting food items by 

computing �� �  �� �   . If this set is empty then no conflict is found and an updated 



41 

 

version of the conflicting food items is computed ��� �  ��� !  ��. The next section will 

show how to check for conflicts at each component of the system 

3.2.6  MISS Conflict Checking 

MISS is composed of three subsystems: The Doctor Subsystem, the Pharmacy Subsystem 

and the Smart Home Subsystem. MISS will also access a global medicines database from a 

trusted third party. Each of these subsystems is responsible for checking for conflicts but it is 

expected that each one captures a more specific set of conflicts than the others. The algorithm 

for checking conflicts is very similar. Therefore we define the following two routines as 

follows: 

Definition: Get Data (GD) 

Input: Prescription r = (p, m) 

//Get the data of p querying the local database 

Query Mp, Cp, Fp, CMp, CCp, CFp 

//Compute data of m from the global medicines database 

Compute ��, ��, �� 

 

Definition: Conflict Checking (CC) 

1. Input: Prescription r = (p, m) 

2. Call Get Data (r) 

3. If (�� � �� �   and � � ��� �  ) 

4.   If (�� � �� �  ) 

5.     If (�� � �� �  ) 

6.       //No Conflict found 



42 

 

7.       ��� �  ��� !  �� 

8.       ��� �  ��� !  �� 

9.       ��� �  ��� !  ��          

10.     Else 

11.       Medicine m creates food conflict  

12.   Else 

13.     Medicine m creates a health condition conflict 

14. Else 

15.   Medicine m creates a medicines conflict 

In this model it is assumed that the process starts when the patient visits the doctor and is 

prescribed with some medicine. Therefore at the Doctor Subsystem (DS) the model is fed 

with a new prescription r = (p, m). This prescription r contains the id of the patient p and the 

id of the prescribed medicine m. The DS will have a local database with information stored 

about the patient p such as previously prescribed medicines, and health conditions. The DS is 

assumed not to store any information about food, so this set will be empty. This means that in 

the DS checking for conflicting health conditions and conflicting medicines will be enforced. 

This check will be performed by invoking the previously defined function CC with input r. If 

no conflict is found then the prescription r is sent to the Pharmacy Subsystem for further 

checking.  

At the Pharmacy Subsystem (PS) it is assumed that the prescription r has been checked at 

the DS and no conflict has been found. The PS therefore will receive the prescription r from 

the doctor. It will then use this information to further check for conflicts. It is expected that 

the PS will have a local database with the patient’s record of previous prescriptions and over-

the-counter medicines bought at that pharmacy. This data may be different to the one at the 

DS.  It is possible that the patient is visiting different doctors and a different prescription 



43 

 

from different doctors might be the source of conflict. The patient also might buy over-the-

counter medicines which could be the ones that create the conflict, so all of them must be 

checked. It is assumed that the pharmacy does not store information about food, so this set 

would be empty. Therefore the PS must check again for conflicting conditions and 

conflicting medicines but using the pharmacy’s local data. This is performed by calling the 

previously defined function CC with input r using the pharmacy’s dataset. If no conflicts are 

detected the data is clear to be sent to the Smart Home Subsystem. 

The Smart Home Subsystem (SS) will receive the data from the PS in the form of a 

prescription r. The SS is expected to check for any remaining possible conflict among 

medicines such as those picked up at different pharmacies. We are expecting the SS to have a 

local database with an inventory of the medicines and the food items available. This will 

allow checking if there is any remaining medicines conflict. The patient might be visiting 

different pharmacies and different doctors. The medicines prescribed from different doctors 

might create a conflict at this should be detected at the pharmacy. But if the patient is also 

visiting different pharmacies, these conflicts can go undetected. These multiple paths of 

conflicts are the ones that the SS will be responsible of detecting. Also again the patient 

might buy over-the-counter medicine at a gas station or grocery store for example. These can 

create undetected conflicts as these stores are not part of our system. But when the patient 

arrives at the Smart Home, the SS have the capability of detecting these conflicts with over-

the-counter medicines as well. The SS also detects any food items in conflict with the new 

prescription or with over-the-counter medicines. All these checks are performed by calling 

the function CC with input r using the SS local dataset which includes the medicines 

inventory of previous prescriptions and over-the-counter medicines, and the set of food items 

available. 

3.2.7  Instantiation of the Model and System Design 

Now that we have defined the main subsystems we want to ensure that everything works 

correctly and the system actually detect conflicts. For this instance imagine the following 

scenario. A patient visits the doctor and the doctor prescribes three medicines. The doctor 

records indicate a previously prescribed medicine and diagnosed health condition. One of the 



44 

 

three newly prescribed medications will create a conflict and this will be detected. Later the 

patient goes to the pharmacy, where he previously picked up a prescription from another 

doctor. The system should detect a conflict among the medicines prescribed by these two 

different doctors. Now the patient arrives home and only one of the three prescriptions so far 

has not find any conflict. But at the smart home the patient has some food item which should 

be avoided with that medicine and this is detected by the system. Based on the previous 

scenario we will present now an abstract instance of the model followed by an instance that 

uses real data of drug interactions pulled from the PDR Drug Interaction Tool [15]. 

Let’s consider an abstract instance of the model. In Table 1 we have the patient’s data 

stored at the doctor’s module in the row DS, the patient’s data stored at the pharmacy’s 

module in the row PS and the patient’s data stored at the smart home module in the row SS. 

Mp, CMp Cp, Fp are as defined in Section 5. The medicines MA, MB and MC are prescribed 

by the doctor with the data as shown in Table 2. ��, ��, �� are as defined in section 5. In 

this instance we have that for prescribed medicine MA, the DS will detect a conflict with 

conditions C1, but medicines MB and MC will find no conflicts based on the doctor’s data 

about the patient. When prescription data arrives to the pharmacy, the PS will detect a 

medicines conflict among prescribed medicine MB and previously prescribed medicine M2. 

No conflict is found with medicine MC up to this point. When the SS checks, it finds a food-

drug conflict with prescribed medicine MC and food item F3. Therefore the patient or 

caregiver can be informed of this. This is an example on how the lack of information of the 

entire context can lead to a conflicting prescription, but with this system it will eventually be 

detected. The abstract model shows that this can be applied to any set of medicines. Also 

shows an example of the different paths that can create a conflict. In general a patient is 

seeing different doctors who prescribe different medicines. Prescriptions from one doctor 

might create a conflict with prescriptions from another doctor and the pharmacy module 

would detect that. But if the patient is also visiting different pharmacies these conflicts may 

go undetected. Also buying over-the-counter medicines at places different than the pharmacy 

can create the conflict. But at the Smart Home subsystem these conflicts would be detected 

as it works as a sink node. We want to ensure safety in this system which is one of the main 



45 

 

motivations to perform these conflict checks repeatedly from the very beginning of the 

process. 

Consider now the case with real drug interaction data set pulled from the PDR Online 

Drug Interaction Tool. In Table 3 we have the data stored at the doctor’s module in the row 

DS, the data stored at the pharmacy’s module in the row PS and the data stored at the smart 

home module in the row SS. Table 4 shows the medicines prescribed by the doctor in this 

case Zoloft, Percocet and Allegra. The data about the conflicts is also presented in each 

column. At the doctor’s module the patient’s data indicates he was previously prescribed 

Ambien and has a condition of hallucinations. Therefore a conflict is detected with the 

prescribed medicine Zoloft which is not recommended if a patient has hallucination and also 

conflicts with Ambien. The rest of the prescription Percocet and Allegra find no conflict with 

Ambien. At the pharmacy the patient previously had a prescription of Xanax from a different 

doctor. Therefore a conflict with Percocet is detected as these two medicines should not be 

taken together. The medicine Allegra has found no conflict yet. Now at the Smart Home 

module we have the medicines inventory and the food inventory. A conflict is found between 

Allegra and Orange Juice as they should not be taken together. In the next subsections the 

prototyped implementation of this model are described. 

 

 

 

 

 

 

Table 3.1 Patient’s data at each subsystem 

 

 

 Mp CMp Cp Fp 

DS M1 M11 C1 F1 

PS M2 MB C2 F2 

SS M1, 
M2, 
M3 

M11, 
MB, 
M33 

C1, 
C2, C3 

F1, 
F2, F3 



46 

 

M CM CC CF 

MA M0 C1 F11 

MB M2 C22 F22 

MC M32 C33 F3 

Table 3.2 Prescriptions at DS 

 

 Mp CMp CCp Fp 

DS Ambien Zoloft Hallucinations * 

PS Xanax Percocet * * 

SS Ambien, 
Xanax 

Ambien, 
Percocet 

* Orange 
Juice 

Table 3.3 Patient’s medicines at each subsystem 

 

 

M CM CC CF 

Zoloft Ambien Hallucinations * 

Percocet  Xanax * * 

Allegra * * Orange 
Juice 

Table 3.4 Example of a prescription at DS 

3.2.8  Prototyped Implementation  

The prototyped implementation of several use cases in our Smart Home Lab shows the 

feasibility of this system. The Doctor, Pharmacy and Smart Home Subsystems have been 

implemented as follows. One node has a customized application for inputting the prescription 

details and stores these in a database acting as the doctor’s module. This node sends the data 

to another node which acts as a server with the patient dependent and patient independent 

information corresponding to the pharmacy. It assigns an RFID tag to the prescription 



47 

 

received from the doctor’s module. Then we have another node acting as the client, querying 

the pharmacy’s computer using an RFID tag as the key. We used a Phidget RFID reader [16] 

and assigned different RFIDs to several containers and tested the reading of tags. After 

reading the tag the client computer queries the pharmacy database and downloads the 

specific information that matches the RFID-tag as the primary key. The information includes 

details about the prescription. This data obeys a format that the Smart Home can store it in its 

database and use it to update other subsystems such as the reminder, notification and 

medicine inventory. When a conflict is detected the corresponding message is displayed. The 

Smart Home subsystem was developed as a bundle that runs is OSGi, a framework 

particularly suitable for Smart Home applications [17]. The flow of data was correctly 

transferred from the Doctor’s node all the way to the Smart Home and the experimental 

conflicts were correctly detected. 

3.2.9  Conclusions and Future Work 

The management of medicines and prescriptions by the elderly and people with special needs 

might be a challenging task for this population. A system that reduces manual intervention 

and a model for checking and detecting conflicts is presented. This system starts with a visit 

to a doctor which enters the prescription information into the system and check for 

conflicting medicines and health conditions. This data is made available to the pharmacy, 

through RFID-enabled prescriptions. The pharmacy performs a double check for conflicting 

medicines and health conditions and prescriptions are dispatched in special RFID-enabled 

containers. The patient scans the special containers in the Smart Home which updates the 

system with the data it downloads from the pharmacy. The Smart Home checks for 

conflicting medicines, health conditions and food items and if no conflict is found updates 

the calendar, reminders, inventory and other subsystems. MISS correctly detects conflicts 

using a formal model and will facilitate the task of giving reminder and increasing medicine 

in-take compliance. Integrating this system with the whole medicine dataset provided by the 

official governmental and medical entities such as the FDA and PDR is on-going. 

 



48 

 

3.3  Service-Oriented Middleware for Smart Home Applications 

Modified from a paper published in Proceedings of the IEEE Wireless Hive Networks 

Conference, 2008 

José M. Reyes Álamo, Johnny Wong 

 

3.3.1  Abstract 

Smart Homes uses different devices including sensors and actuators to provide services that 

assist in performing the activities of daily living. Currently these smart homes are developed 

in a manual and adhoc way. Manually configured smart homes create scalability, 

extensibility and cost problem. The need for a uniform platform for intercommunication 

among devices and a middleware abstraction using service-oriented technology is presented. 

A layered architecture for smart home developers to use is presented. Different demos that 

take advantage of the service-oriented middleware layer are shown. 

3.3.2  Introduction  

The Smart Home is equipped with sensors, actuators and other technology to assist the 

resident performing the activities of daily living. Most of the research in smart homes focuses 

in assisting the elderly and persons with special needs [1]. The rich number of devices to use 

as well as the diversity of these technologies poses tremendous challenges at the time of 

development. Having all these devices working together is usually done in a manual, adhoc 

way [26].  Having a uniform way for developing and deploying smart homes applications 

becomes necessary in order to speed the process and reduce the cost. This uniformity will 

help ensuring that the smart home performs the tasks it is supposed to. It will also maintain 

the non-intrusiveness, making the resident feel comfortable within a technology pervasive 

space. 

A smart home is implemented by combining and integrating technology already 

available. This allows providing a series of composed services that a single product cannot, 

adding more variety to the task that can be assisted by a smart home. Most services and 



49 

 

applications in a smart home need some type of sensor such as temperature, light, or weight. 

These sensors are passive and are used to monitor the environment and measure phenomena. 

Services may use actuators such as light controller, appliance controllers, and motors to 

automatic open or close doors. Actuators are active devices that can control other devices and 

change their state. Smart homes combine sensors, actuators and applications providing a 

variety of individual and aggregate services and making the smart home a hybrid sensor 

network. This interaction among devices does not necessarily seek to facilitate the 

communication among human-to-human or human-to-machine but the device-to-device.  

This section shows how different sensors, actuators and application can be combined to 

make application for the smart home. It also shows the difficulties on integrating different 

technology into a single service. Based on these difficulties, important requirement are 

indentified to facilitate the development and deployment of such services and applications 

within a smart home. Several examples of current and proposed services and applications are 

explained. Based on the difficulties and the requirements found we proposed an architecture 

for smart home sensor applications especially sensor applications. This architecture has 

several layer one of them the software middleware layer. This software middleware is the 

key to improve development and interoperability among devices. Several applications on the 

smart homes that will benefit of using our proposed architecture and middleware are 

explained. Different demos that have been implemented using this service-oriented approach 

are also explained and one of these demos is explained more detailed. 

 
3.3.3  Related work 

A middleware solution for sensor networks have been studied in the past and some solutions 

have been proposed. For example [19], presents Atlas that is a middleware sensor platform. 

The idea of Atlas is to enable programmable pervasive spaces making the sensors plug-and-

play.  To accomplish this the sensors connect to an Atlas node, which is a piece of hardware, 

and the Atlas node has to be configured by indicating which sensors are connected to it. After 

this initial configuration the Atlas node is turned on and it will load a service to an OSGi 

framework and the sensors will be ready to use. This is a possible solution nevertheless using 



50 

 

Atlas adds another piece of hardware which requires a constant source of power. The sensors 

supported are analog sensors which require wiring. Also the configuration of the Atlas nodes 

is still very manual and does not detect when a sensor is changed, you have to re-configure 

the node. Using current standards such as IEEE 802.11 for sensor networks is proposed in 

[4]. This have the advantage that these protocols are well defined, thoroughly tested and 

allow for interoperation with current devices that uses the standard. Even thought devices 

that use IEEE 802.11 consume less energy than in the past, using this standard for sensor 

networks needs more investigation. In [70] it is proposed a set of configurable devices to use 

for health monitoring which can be controlled by a Pocket PC. The problems is that the 

battery lifetime is too short and that the Pocket PC needs to be carried all the time, even 

inside the smart home for this application to work.  

As we can see several devices and application has been developed to alleviate the 

problem of using wireless sensors for different applications. These same techniques can be 

integrated together and used in the smart home but this process needs to be simplified and 

standardized. In the next few sections we define the smart home as a device-to-device 

environment. 

3.3.4  Smart homes as a device-to-device environment 

The smart home uses sensors, actuators and applications in order to assist the resident in 

performing activities of daily living. The emphasis is on the performance and communication 

among devices and application and not necessarily human-to-human or human-to-computer 

[71]. Therefore a smart home fits into the definition of a wireless hive network. We present 

two cases of applications that use different devices to provide a service and how smart home 

fits the wireless hive network definition. 

Consider first the case of a smart home that assist the resident in the management of their 

medicines such as in [66]. This system integrates the doctor, pharmacy and the smart home 

and check prescriptions for conflicts with other medicines, food or medical conditions. In this 

system each prescription has a unique RFID for identification and tracking purposes. An 

RFID reader is needed to scan the medicine into the smart home system and to detect the 



51 

 

location of the medicine within the smart home. Depending on the user preferences a 

reminder system can include an alarm, speaking a message or a pop-up message on the TV. 

Different actuators are needed to perform these tasks and remind the resident to take the 

medicines. This system has a conflict detection routine which needs to interact with other 

sensors, actuators and applications. As seen all these task require the interaction of several 

devices and applications but not with the resident. This data eventually need to be available 

to the resident, nevertheless the main purpose of the system is the device-to-device 

interaction and not the user-to-user or user-to-device interaction. Therefore an application 

like medicine management fit the definition of wireless hive networks. 

Food management using a smart refrigerator and a smart microwave is another important 

service provided by a smart home [25]. In a food management application, RFID tags are 

used to identify the food items. An RFID reader is used to detect and locate the food. A 

database with the food information such as name, nutrition facts, and expiration date is 

needed. Temperature sensors will help to ensure the food remains fresh and at appropriate 

temperature. Weight sensors are needed to detect when running out of food. A reminder and 

conflict checking system will also use information from the food management system. In the 

food management system the food information needs to be available to the user but the 

interaction among devices is more important. The operations of the sensors, actuators and 

other devices such as storing information and conflict checking routines needs to be 

optimized. Again the main focus of the food management service is the device-to-device 

interaction and not the user-to-device interaction. 

These are just two examples of application within a smart home that uses and integrates 

several sensors and actuators whose interaction need to be optimized for that purpose. 

Another applications and services in the smart home includes location and tracking, opening 

and closing the door, wake up service, emergency detection, turning appliances on or off 

(such as stove or iron) and more. All these applications and services require close interaction 

among the devices but there is no standard way to do it at this point. Most of these services 

and applications are integrated in a manual and ad-hoc way. Therefore a set of requirement 



52 

 

for sensors and actuators need to be defined so that the development time and the cost of 

development can be reduced. The next section lists these requirements. 

3.3.5  Smart home requirements 

The smart home has a number of devices interacting with each other. There is a need for 

these devices to be able understand each other. Different sensors use different 

communication protocols and some protocols are proprietary. The use of wireless mesh 

networks [60] to allow communication among different protocols would enable devices to 

communicate with each other. A wireless mesh network uses wireless mesh router which are 

routers that understands different communication protocols and route from one protocol to 

another protocol. For example a router that understands Zigbee, Wi-Fi and Ethernet can be 

used to interconnect three different networks and exchange data among them. This 

interconnection is necessary and also that the data sent must be correctly understood by other 

nodes. To this purpose a software middleware layer is presented in which the raw sensor data 

is sent over the wireless mesh network, the wireless mesh network communicates with the 

middleware, and the middleware translate the data to a format understandable by the 

receiving node. For example the Phidgets sensors [72], returns raw data in numbers from 0 to 

1000. In the case of a temperature sensor a returned value of 200 is not very useful. The 

middleware will take care of making the conversion from this raw value to the appropriate 

temperature in Celsius or Fahrenheit degrees. This middleware also will make easier 

application development as programmer can just query for temperature without worrying 

about which physical sensors are being used. 

Other requirements especially for battery operated sensors, is that they must have a long 

life and be reliable. Some perpetual sensors can be plugged into a constant source of power 

and other can be wireless. Either way sensors should notify with plenty of time when running 

out of battery or failing. Also nodes should provide security by notifying when they are under 

attack. Sensor must ensure privacy and security by allowing only the appropriate parties 

query the reading of the sensors and access them. The architecture for smart home 

applications is presented in details in the next section. 



53 

 

The need for a solution that is extensible and scalable is needed as some services in the 

smart home might be temporary. For example imagine the case where the resident of the 

home is under certain treatment to determine if the resident has certain health condition. It 

might be possible that the resident needs to carry a set of wireless sensors for a just a few 

days. These devices will become new to the smart home. Configuration and testing should be 

minimal and transparent, a process that is not possible in today’s smart homes. The resident 

might not want to alter the smart home configuration and re-program it. Having an easy way 

to add these sensors to the smart home and remove them when no longer needed, will be very 

helpful. This requires a common architecture which is presented in the next section 

3.3.6  Smart home layered architecture 

The following is the proposed architecture for the smart home sensor applications. At the 

very bottom we have the Phenomena and Objects Layer. In this layer the phenomena to be 

sensed by the sensors and the objects controlled by the actuators are found. The next layer is 

the sensor and actuators layer that consist of sensor and actuators from different 

manufacturers. We assume that these devices implement different protocols.   The next layer 

is the connectivity layer. This layer has the wireless mesh routers which enables 

communication among different protocol and allow the sensors to communicate among 

themselves.  The next three layers will reside on the smart home host computer. The layer on 

top of the connectivity layer is the software middleware layer. This software middleware 

layer will be responsible for implementing the device specific details for each of the sensors 

and actuators and provide them as services. This will add a layer of abstraction in which 

instead of reading raw sensor data you will read significant values. These services provided 

by the software middleware layer will be made available to the service layer. The service 

layer is a collection of all sensor, actuators, and application services all under the same 

framework or platform. These services can be incorporated in service-oriented frameworks 

such as OSGi [4]. This service layer will provide the services to the applications layer. It is in 

the application layer where the different smart home operations are performed and the one 

with which the resident interacts with the smart home. In Figure 3.3 you can see a visual 

representation of this architecture. We have implemented several demos using this service-



54 

 

oriented approach and using sensors and actuators from different manufacturers in our smart 

home lab. A description of some of these follows in the next section. 

 

 

 

Figure 3 - Smart Home Layered Architecture 

 
 
 
 



55 

 

3.3.7  Smart home demos 

In our smart home lab, we have several demos that use devices such as Phidgets sensors, rfid 

reader, and web cameras, and X10 appliance controller, and telos motes. Some of these 

demos interoperate with different technologies by invoking services provided by the service 

layer. In our case the middleware is also implemented as a service. Applications are therefore 

developed using only the services provided, abstracting the details on the particular hardware 

that do the readings. For example we have a temperature service which can either use Phidget 

sensor or a telos sensor. For the application it does not matter which sensor we use as it uses 

the temperature service which abstracts the particular hardware that makes the temperature 

readings. We have implemented several demos using this approach such as the medicine 

management, a smart fridge, a camera controller and an alarm system that turns on 

appliances at the time to wake up. 

To show interoperability among different protocols we will describe in details one of the 

demos we have developed. This demo uses wireless sensors to collect the data and 

communicate with an application via the Internet.  We have one telosb mote A which is 

sensing phenomena. We have another telosb mote B which is a base station node connected 

to the host computer over a USB port. Node A sends a packet to node B using the protocol 

IEEE 802.15.4 for Wireless Personal Area Networks. Node B communicates with an OSGi 

service which reads the packet from the telosb node. The raw data is transformed into 

meaningful data by the service. This data is then passed to another service which 

communicates with an application via the Internet. This application consists of a server that 

receives the data and reads is loudly using a text-to-speech module. Figure 3.4 provides a 

visual diagram of this demo. The response time between readings the data, send it to the 

service, send it to the speech-application via the Internet took less than two seconds in all the 

tests. This is very reasonable time frame for a smart home application where response time is 

not as critical as industrial applications. Also taking in considerations that the OSGi 

framework and the sensor network application are running on a VMWare Virtual machine 

running Xubuntu Linux, all the services are running in an OSGi framework and the speech 

application is running on a MAC reachable over the Internet. So even after all these layers of 



56 

 

abstractions the response time is very reasonable for smart home type applications. The fact 

that service oriented approach can cross several platforms in a reasonable amount of time is 

also a plus. 

 

 

Figure 4 - Sensors Demo Diagram. 

 

3.3.8  Conclusion and future work 

A smart home has several sensors and actuators providing different services. Interconnecting 

them is difficult and is often done in a manual, adhoc way. We identified key requirements 

for smart home applications that use several sensors and an architecture that will ease the 

task of development and reduce the costs. The approach focuses on the device-to-device 

communication and the use of a software-layer middleware. We showed that this approach 

applies to smart homes in application such as medicine and food management as the tasks the 

devices need to perform are not designed specifically for human-to-device interaction. The 

architecture emphasizes a mesh layer which will make communication among different 

protocols possible and a service-oriented software middleware layer which will make 



57 

 

possible to abstract the devices to the service they provide without worrying on the particular 

device. We mentioned how several demos on our smart home lab used this approach and 

gave the details on one of the demos that use different communication protocols and layers of 

abstractions to show the feasibility of this proposed architecture and middleware. The 

response time for these applications and demos is acceptable for smart home application. 

Future work includes refining the middleware layer and tests it with more devices. Making 

this middleware plug-and-play is another research goal. 

 
3.4  Composition of Services for Notifications in Smart Homes 

 

Modified from a paper published in Proceedings of the Second International Symposium 

on Universal Communication, 2008 

 
José M. Reyes Álamo, Tanmoy Sarkar, Johnny Wong 

 
 

3.4.1  Abstract 

Giving notifications in a timely manner is an essential service that Smart Home should 

provide. Communication of resident’s data to their doctor, health care provider or family 

member via email, phone call, or text message is indispensable. In order to reduce the cost, 

improve extendibility and reduce the developer’s burden and learning curve, we propose a 

service-oriented notification system. This system has different simple services which provide 

essential communication needs, and by composing these services with applications more 

sophisticated needs can also be satisfied. A detailed description and the architecture are 

elaborated below. 

3.4.2  Introduction 

The challenges of holding mobility make it difficult to live alone independently for elderly 

adults. Smart home environments provide assistance to elderly ones and persons with special 

needs in performing their activities of daily living. Smart Home aims at providing a more 

independent life to those people who require only a little assistance, so that they can stay at 



58 

 

home instead of moving to some nursing facility. The emerging wireless technology and 

pervasive computing model help us to create prevalent environments to support the aged 

people. 

The objective is to design a cost effective, easy to use notification service influenced by 

contextual factors [73], which means the notification system decides the best time and form 

for presenting messages, depending on the state of its users and their environment along with 

estimating the value of the message content. This notification system uses a service-oriented 

architecture. The architecture will create independent services for different notification needs 

and will compose these services among themselves, with other services and applications to 

create more advanced notifications. 

3.4.3  Related Work 

Considerable research is going on medical alert system [74] and medical monitoring for 

independent living [75]. The emergency response systems like [74] and Home alert system 

like [75],[76] guarantee a reliable solution for our daily life but the initial investment and the 

recurrence cost to choose these services may be expensive for middle-class people. These 

solutions are also fixed for a particular set of devices and configuration of the system. Future 

Smart Home environments will contain a wide variety of devices and services from different 

manufacturers and developers. Also these devices and services are expected to be added and 

removed in a dynamic way. In this context, Service Oriented Architecture is the solution 

which will help us to achieve the vendor independence platform and architecture. Service 

Oriented Architecture separates process into distinct services which can be distributed over a 

network. The processes can be combined and reused as per application requirement. Our 

application meets these requirements minimizing any deployment or recurrence cost.  

3.4.4  Our Approach 

Smart Home is an application of pervasive computing that integrates devices and services 

into everyday living environment to benefit their inhabitants. A complete smart home 

architecture will have the following components: device network with different smart home 

appliances, vendor independent service-hosting platform and a service centre for managing 



59 

 

networks and service deploy functions [77]. Open Service Gateway Initiative (OSGI) tries to 

meet these requirements by providing a managed, extensible framework to connect various 

devices in a local network. The general smart home design is shown in Figure 3.5 [78]. 

 

 

 

Figure 5 - General Smart home design 

 

In a Smart Home environment there is a continuous need for communication with 

external entities in different ways. Sending data, email, text message, or making automated 

phone calls are a constant necessity. Usually it is up to the programmer to learn how to use 

and program these functionalities in order to incorporate them in the applications. This is 

tightly-coupled to the particular programming language and platform the developer use. 

Therefore the developer has to learn all the details and get the required libraries in order to 

provide these notifications in different applications and configure them with the particular 

details of each user. 

Our idea is to provide these different means of communication a message as services 

within the Smart Home. This way an application can consume a service instead of 



60 

 

implementing it. These services will be personalized for the person who lives in the Smart 

Home. Data such as the email, phone number and address need not to be entered or queried 

in each application. This will allow the developer to focus on other aspects of development 

and not on notifications details. We understand that this will be very beneficial in terms of 

cost, development time and learning curve.  

Notifications are used very frequently by a lot of applications and modules. These 

programs will definitely reduce the time and cost of development. Also learning the 

particular details to provide certain notification can be time consuming. Moreover, if new 

technology arrives it will be hard to integrate with existing application and a re-

implementation might be the only way to put them together. The developer will have to learn 

again the details of the technology and it definitely will increase the cost and time of 

development. By providing these ways of notification as services, they can be easily used and 

updated without affecting the applications using it, as they will follow a service-oriented 

approach. Also these services can be easily composed to create more sophisticated services 

by combining them with other services and applications within the Smart Home. 

3.4.5  Architecture 

In this section we will present a detailed architecture of our approach. We also describe a set 

of demos we have developed in our Smart Home Lab that make use of this approach and the 

benefits we have received of using notifications as services. Figure 3.6 shows this basic 

design architecture of the smart home notification system developed by our research group 

[24].  

In our Smart Home Lab we use phidgets, telos motes, Insteon, X10 and various other 

types of intelligent sensors [72]. As shown in Figure 3.6, Home Network applications can be 

subdivided into different components such as Home Control, Security, Health and 

Entertainment. These applications have been developed as OSGi bundles which have been 

deployed as OSGi services [8],[79]. These application services are running in an OSGi 

framework. This allows OSGi services to provide other applications and services with the 

required notification functionalities. Our Notification bundle is also a service deployed in the 



61 

 

OSGi framework. This bundle is being used by all the other applications shown in Figure 3.6 

such as Home Control, Security, Health and Entertainment. We will briefly describe a few of 

the demos developed using this approach below 

 

 

Figure 6 - Basic Design Architecture 

Demos: 

Microwave demo: 

 In this demo a microwave oven is controlled using the computer and an RFID reader. 

RFID tags are used to identify the food or meal.  When a tag is read, the food data 

and cooking information is queried. The microwave uses this information to 

automatically set the appropriate time and temperature for the food preparation. The 



62 

 

notification services are used to say loud what food is being cooked. The notification 

system also notify when the food is ready. It also displays an appropriate message. 

The reminder message can be played by the computer using notification speech server 

and displayed on the TV. 

Medicine demo: 

This demo helps in the management of the medicines in the Smart Home environment 

[68]. This demo integrates the doctor, the pharmacy and the smart home to ensure 

safety and check for conflicts. Prescriptions are checked for conflicts with other 

prescriptions, with over-the-counter medicines and conflicts with food. This demo 

also reminds the elder people with special needs, of critical tasks such as medication 

intake and doctor appointments. These reminders use the speech notification service. 

Also notifications can be sent to the health care provider in the case that the person 

misses a dosage of a medicine. When a conflict arises also a notification can be set to 

the doctor or health care provider and also to the resident. These notifications can be 

customized and messages can be sent to end user’s mobile phone or to email account 

depending on the preferences. Also if the person is not within the home network and 

cannot hear the speech notification, a message alerting of this situation can be sent 

also. This shows how many different uses can be given to this notification services. 

The developer does not need to create them but just use them. 

Smart Fridge Demo:  

This demo helps in tracking food items in the Smart Home. Food is identified by 

RFID tags. A particular food item has some data indicating the resident’s preferences 

of items and threshold weights. The preference order will indicate if the resident 

wants the food to be automatically reordered and the threshold weight will indicate 

when it is a good time to reorder. The reordering can be done by sending a 

notification to the grocery store when the weight goes below the threshold for a 

particular food item. This demo can also inform end users using the notification 

service when important food items such as milk and eggs goes below the threshold 



63 

 

value to the shop nearby. The notification service is also used in conjunction with the 

medicine demo to detect conflicts between food and medicines. When a conflict 

arises a message can be sent to the appropriate parties and the resident notified. All 

these services can be used by the developer but there is no need to re-develop them. 

Macro Demo:  

Powerful technology does not always have user-friendly nature. As a consequence, 

usability of technology reduces. As an example, clumsy look of Knopflerfish OSGI 

Desktop may make users reluctant of using OSGI applications. Secondly Centralized 

complex applications may not become useful for elderly ones and people with special 

needs. The goal of the Macro demo is to Control or schedule any Smart Home 

applications on the fly and improve the quality of life of elderly people by using 

distributed architecture with wireless technologies and the Internet. In this demo we 

have developed a platform independent graphical user interface called Application 

Management System by which an end user can check or schedule device applications 

connected in home network. Notification Service may be used as a component of this 

demo. The example given below will clearly demonstrate the usefulness of 

Notification Service in Macro Demo. Suppose an old person is at home alone and is 

unfit to walk. The son is at the office during daytime. It may be possible that the 

person accidentally falls from the sofa or bed and his son wants immediate 

notification when an accident like this happens so that he can help his father. 

Therefore, he has scheduled an event using the macro demo that whenever the 

pressure sensor attached to his father’s wrist triggers, a text notification will be sent to 

his mobile phone. Our notification text message service easily fits into this scenario 

without modifying a single line of code and perform the operation expeditiously. 

The above examples clearly demonstrate the potential benefits of having notification 

technologies in Smart Home environment to support independent living. The service-oriented 

approach allow to reduce the deployment and development cost as the developer needs to 

learn only what the services do and how to use and does not have to develop the services 



64 

 

every time. This also shows how the same service can be used several times by different 

applications. So a repetitive task now does not have to be repeatedly developed; only 

repeatedly used. 

3.4.6 Conclusions and Future Work 

A service-oriented approach significantly simplifies the task of satisfying simple 

communication need as well as more complex ones. We presented the advantages of such 

approach and also demonstrated how smart home applications can benefit from it. Reducing 

the cost and time of development is essential for smart homes to become ubiquitous. Having 

these basic functionalities available as services will greatly reduce the learning curve of the 

developer as well as the customization that each smart home requires. As our prototyped 

implementation shows these simple and combined services markedly simplify the 

development of applications and satisfy the different needs for communication via various 

means.  

A major challenge in future notification system will be to predict immanent importunity 

of messages. Additional user studies are needed to capture this and to create prediction 

models. Although our proposed notification service has an audio based service, there are 

several new trends in Smart Home that can be integrated to our notification service such as 

video based multimedia service. By using our notification service through ubiquitous 

computing the dream of future smart home will come true. 

 

3.5  Using Web Services for Medication Management in a Smart Home 
Environment 

 

Modified from a paper published in Proceedings of the 7th International Conference on 

Smart Homes and Health Telematics 2009 

 

José M. Reyes Álamo, Johnny Wong, Ryan Babbitt, Hen-I Yang, Carl Chang 

   



65 

 

3.5.1  Abstract.  

The Smart Home is a house equipped with technology to assist especially the elderly and 

persons with special needs. Smart Homes rely on Service-Oriented technology usually OSGi. 

Web Services (WS) receives little emphasis on Smart Homes, but they can be very useful for 

some applications. That is the case of management of medication as this task can become 

very difficult and involve different, remote parties. Several solutions have been proposed for 

applications like medications management but their lack of interoperability limits them. We 

present a solution that integrates current systems and provides interoperability by using WS. 

The secure transfer of sensitive data among subsystems is achieved by using secure WS for 

communication purposes as shown by our prototyped implementation. 

3.5.2  Introduction 

The Smart Home (SH) is a house equipped with technology like sensors and actuators with 

the purpose to help the resident in performing their activities of daily living. SH research has 

focused on using these homes to help the elderly and person with special needs to stay home 

longer and live more independently. SHs have relied on the Service Oriented Computing 

(SOC) approach to simplify its design, shorten the development time and reduce the cost 

[18]. Different Service Oriented Architectures (SOA) has been developed. Two widely used 

SOA are Web Services (WS) and OSGi services. Both architectures are platform 

independent, rely on well defined standards and can be deployed over networks. WS has 

become very popular and most research in SOC has focused on WS. OSGi has become a 

widely used standard for applications that use embedded devices such as SHs. This section 

shows that WS are very useful for certain SH applications especially remote applications and 

those involving third parties. The use of WS for certain applications certainly reduce the cost 

and development time as some of these services needed are already available. 

One of these applications of WS within the SH is with the management of medications. 

Difficult prescription names, different instructions and the fact that a person might be taking 

several medicines at the same time can make this a difficult task especially for the elderly 

and persons with special needs. Using technology will certainly help this population to 

increase compliance and medication intake [80]. 



66 

 

The SH environment can help with the management of medications. The authors in [66] 

provide a system called Medicine Information Support System (MISS) which integrates the 

doctor, the pharmacy and the SH to increase safety, manage the medications and increase 

medication intake and compliance. This system requires little action from the SH resident as 

it takes care of the process in a transparent way. WS technologies are integrated with the 

MISS system to make it more interoperable, expandable and platform and language 

independent. 

3.5.3  Related Work 

In [81] the author explains how today's devices are more powerful with more computational 

and communication power allowing this technology to be used in home applications. 

However these devices and appliances use different protocols, a lot of them proprietary. They 

proposed a solution based on WS to achieve interoperability, heterogeneity and scalability. 

They implement the WS stack in the devices or in the devices controller. Their main purpose 

for bringing technology into the home is to help the elderly to stay home longer, having the 

necessary assistance and reduce the learning curve, sharing a similar motivation of this work. 

Even though in [81] the authors propose a solution based on WS for SH applications, in 

general SHs rely on the OSGi service platform [8]. Both technologies offer a set of unique 

features, so the combination of them can help providing new solutions. In [82] the authors 

describe a driver on top of OSGi in which devices can be dynamically added, invoked and 

mapped to different WS standards. Their vision is to have a centric platform in which the 

functionalities are provided as services and applications compose these services in a flexible 

way. The OSGi platform is used and drivers on top of OSGi are developed to support WS. 

Each WS is mapped into a service in the platform. This is a good attempt in trying to 

combine both technologies together but full integration it is still needed [67]. 

3.5.4  OSGi and Web Services in the MISS System 

The Medicine Information Support System (MISS) is a system that helps patients to manage 

their prescriptions [66]. It improves safety by checking for conflicts among medications, 

health conditions and food. The way it does it is by integrating the doctor, the pharmacy and 



67 

 

the SH in such a way that prescription information is forwarded from one subsystem to the 

other. It uses a trusted third party that defines the conflicts among medications, health 

conditions and foods. Prescriptions data is checked against the patient’s data stored at each 

subsystem to identify any possible conflicts. The next few paragraphs briefly summarize 

MISS and how we applied WS to it. 

The doctor subsystem is where this process begins. The doctor enters the prescription 

details with the medications and dosage information. The doctor is assumed to have a record 

of the previous prescriptions and health conditions of the patient. The patient’s record is 

checked against the new prescription to determine if a conflict exists. To detect a conflict we 

use a trusted third-party such as the Food and Drug Administration (FDA) or the Physician 

Desk Reference (PDR) who defines conflicts among medications, conditions and foods. 

After this check, prescription data is forwarded to the patient’s preferred pharmacy via a 

secure communication channel. 

The pharmacy subsystem performs a similar function of checking the prescription for 

conflicts with other medications. We assume that the pharmacy keeps a record of all 

medications previously picked up by the patient. A check for prescription conflicts is 

performed using the patient’s data at the pharmacy and a trusted third party such as the FDA 

or PDR. If no conflicts are found a secure channel is used to forward the prescription data to 

the SH. 

The SH subsystem performs a similar check for conflicts. It is assumed that the SH keeps 

an inventory of the medications and the food at home. The SH then check for conflicts 

among medications picked-up from different pharmacies and with food at home. Again a 

trusted third party defines the different conflicts. 

The MISS system assumes a secure communication channel for forwarding data from the 

doctor to the pharmacy and from the pharmacy to the SH but no details of this secure channel 

are provided. One way this secure communication channel can be implemented is by using 

WS which will also make the different subsystems interoperable as WS are platform and 



68 

 

language independent, a main feature of this technology [29]. This will allow for current 

system to keep working but also to be expanded by using this technology.  

This work extends the MISS system by making WS a fundamental part of it. MISS makes 

use of stand-alone applications for the doctor and the pharmacy subsystems. It uses OSGi 

services at the SH to control the devices and application. This work uses WS to glue these 

three subsystems together providing interoperability and preserving the platform and 

language independence. It also allows other applications to use the Web Service provided if 

needed. This approach takes care of providing a secure mechanism for forwarding data 

among subsystems. The next section has a summary of a prototyped implementation of MISS 

using WS. 

3.5.5  Formal Verification 

In applications using Web Services that involve thirds parties, maintaining the privacy of the 

data is an important issue. We want to make sure that the system is safe, that the privacy is 

respected and that the system is correctly used. These issues are addressed by using formal 

methods. One part is to check that the conflict checking routine is sound and that it detects 

the conflicts it is supposed to detect. Another part is to make sure the privacy of the patient’s 

data is respected when using the Web Services or another service-oriented approach. Another 

part is to ensure that the person is using the system correctly. The next subsections provide 

more details how to achieve these goals. 

Model checking is a mathematically well-founded automated software verification 

technique that is becoming popular as software becomes more complex and intractable, as a 

way to ensure safety and correctness [83]. In model checking a model M of the system is 

provided with state transitions and a property P. The checker will visit all possible paths of 

state transitions to see if P holds. If the property holds it will return true, otherwise it 

provides a trace file indicating where the property fails to hold. In the MISS system [66] a 

model for the conflict checking routine is provided which defines a set of medicines M, a set 

of medical conditions C, a set of food items F, a set of doctors D, a set of pharmacies P, and 

the smart home H with functions  for detecting conflicting_medicines: M�P(M), 



69 

 

conflicting_conditions: M� P(C) and conflicting_food: M� P(F). Given a prescribed 

medicine m, these three functions are computed and the results are compared to the patient 

record. If the medicines on the patient record and the conflicting medicines form a disjoint 

set, then no conflict is found otherwise, the prescribed medicine creates a conflict and the 

system gives a notification. In MISS an instantiation of the model is given which shows that 

the routine correctly detects a determined conflict. Nevertheless this is no proof that all 

possible conflicts are detected. Using model checking techniques we have a stronger 

argument in favor of the model used for the conflict checking routine. In this work that is 

precisely what is done, to ensure that the prescription data is formally checked and a broader 

amount of conflicts are detected and not just providing one example. We make use of the 

SPIN model checker [84] to perform this task which for the medicines, conditions and food 

the model checker detects those conflicts. 

 

Service Registry Policy Store Context Manager Privacy Manager 

-stores service 

descriptions and binding 

information 

 

-returns this information 

to the Privacy Manager 

when requested 

 

 

-stores the privacy 

policies of the system 

 

-returns a set of rules 

applicable to a given 

request when queried 

by the Privacy Manager 

 

-retrieves context data 

from appropriate services 

and supplies it to the 

Privacy Manager 

 

-receives service 

invocation requests 

 

-coordinate other 

components to 

evaluate a request 

 

 -returns the access 

decision 

Figure 7 – Major components of our policy architecture 

 

We propose a privacy model based on the service-oriented computing paradigm, where 

services are software artifacts that control zero or more devices, interact with each other via 

invocations, and may be remotely monitored or operated [85]. The components of this 

privacy model are Service Registry, Policy Store, Context Manager and Privacy Manager. A 

summary of these components can be found in Figure 3.7. Different entities might have 

different policies and the context will vary. This privacy model ensures that the privacy of 



70 

 

the patient’s data is respected. Any set of policies imposed by any of the subsystems will also 

be enforced. Only authorized parties will have access to the data. This is a necessary step to 

comply with state and federal laws as well as to respect the desires of the patient, doctor and 

pharmacy on how to handle the sensitive data. The interactions among these components can 

be seen in Figure 3.8. It can be noticed that after a service is invoked, in this case Web 

Service, this privacy model will look for the service in the registry and then it will retrieve 

the applicable policies for this service, user etc. It will consider the context and based on the 

analysis access to the service and data will be granted or denied. 

Technology can improve compliance with medication intake [80]. Still it is needed to 

ensure that patients are using the system as expected by taking the right medicine with the 

right dosage at the right time. Two main requirements to ensure medication intake are 

medication on-time and medication completeness. For example if 4 pills a day need to be 

taken every 6 hours, we want to ensure that the patient follows those instructions. The patient 

fail the on-time requirement if takes the pill every 3 hours or every 5 hours for example. The 

patient fails the completeness requirement if less than 4 pills or more that 4 pills are taken 

during the day. In order to check for this we formally check that the medicine detection 

mechanism detects when the wrong medicine is chosen, that the notifications and reminders 

systems [68] give appropriate reminder and warnings in case of an error, that the context is 

taken into consideration [46] and the system in general correctly catches situations in which 

the on-time and completeness properties are violated. 

 



71 

 

 
 

Figure 8 - Request Evaluation Process 

 
3.5.6  Prototyped Implementation Using Web Services 

A prototyped implementation using the approach described above has been implemented in 

our SH Lab. For the doctor’s subsystem an application has been developed in which the 

prescription details are entered and then forwarded to the pharmacy using a secure WS 

provided by the pharmacy that the doctor’s subsystem invokes. The pharmacy WS provide 

the tools for the doctor to forward the prescription’s data. When a prescription’s data is 

received via this WS, the data will be transferred to the pharmacy’s main system so that the 

pharmacist can starts preparing the prescription. When the prescription is ready the pharmacy 

subsystem use a WS provided by the SH to forward the prescription data from the pharmacy 

into the home system. This WS will allow data to be transferred from the doctor’s subsystem 



72 

 

to the SH also, such as medical conditions. This allows the SH to have more data available 

and perform and final and more complete check for conflicts which will improve safety. 

3.5.7  Conclusion and Future Work  

The SH is a house equipped with technology to help the elderly and person with special 

needs to stay home longer. One way to help this population is with the management of 

medications. This is a task that can become difficult given the amount of data that needs to be 

handled. To increase compliance and medication intake several solutions have been proposed 

but the lack of a universal platform and language independent approach limit these. A 

solution that integrates current systems and makes use of service oriented approaches, 

specifically WS, is presented. Future work includes the use of formal methods to validate that 

the data is transferred correctly, that privacy is respected and that the entire system performs 

its intended functionality. Also full integration among SOA such as WS and OSGi and the 

use of some WS sub-languages is something we would like to do in the future. 

  



73 

 

CHAPTER 4.  SUPPORT FOR MEDICATION SAFETY AND 
COMPLIANCE IN SMART HOME ENVIRONMENTS 

 
 

Modified from a paper published in the International Journal of Advanced Pervasive and 

Ubiquitous Computing, IGI Global 2009. 

José M. Reyes Álamo, Hen-I Yang, Ryan Babbitt, Johnny Wong, Carl Chang 

 

4.1  Abstract 

The rapid pace of new medications introduced to the market and the trend of modern 

healthcare towards specialization complicates doctors’ prescribing process and patients’ 

management of medications as well as increases the likelihood that a patient may be 

prescribed an unsafe medication. The severity of this problem is magnified when patients 

require multiple medications or have cognitive impairments. The Medicine Information 

Support System (MISS) is designed to integrate related information systems from doctor 

offices, pharmacies and patient’s smart homes with a universal database of medication 

conflicts to enable safety checks for adverse reactions among prescribed medications. MISS 

enhances the quality of patients’ healthcare by supporting the conformance of patients’ 

medication intake. MISS is also designed to ensure patients’ medical records remain private 

by following the privacy guidelines and regulations such as the Health Information 

Portability and Accountability Act (HIPAA) law in the United States. 

4.2  Introduction

A Smart Home (SH) integrates and networks different technologies to provide assistance 

with activities of daily living. SHs specifically designed for the elderly and persons with 

special needs have gained importance as a research subject in the last few years as the baby 

boomer generation reaches the retirement age and begins to experience the need for 

assistance [1]. One of the primary needs of this population is assistance in managing 

medications, which can be challenging due to complicated medication names, multiple 

simultaneous medications, or medications with differing types of dosing instructions. Two 



74 

 

often overlooked but extremely important facets of medication management are the detection 

of possible conflicts among medications and complying with prescriptions. 

The Medicine Information Support System (MISS) presents a smart home-based solution 

to integrating doctor offices, pharmacies and a patient’s home to assist patients in managing 

their medications [66]. It supports the safety of prescriptions by checking at multiple times 

for conflicts between medications, health conditions and foods that a patient may be eating. 

When a doctor enters the information about a new prescription, the system automatically 

checks for conflicts with any previously prescribed medications or diagnosed health 

conditions in the patient’s local record. The prescription information is then forwarded to the 

pharmacy to determine if there is a conflict with any prescriptions filled at that pharmacy, 

including prescriptions filled from other doctors. Lastly, the prescription information is then 

forwarded to the SH to check for conflicts between all of the patient’s medications, health 

conditions, and foods, regardless of doctor or pharmacy. This allows for medications 

prescribed by different doctors of filled at different pharmacies to be checked for conflicts. 

MISS is designed to transparently wrap around existing computer systems that are 

already in place in doctors’ offices, pharmacies and smart homes using Web Services (WS) 

to provide interoperability via standard communication interfaces. The system requirements 

and design architecture are presented in section 4 provides a detailed view of the interactions 

between different subsystems, as well as the data they exchange. Because proper medication 

management is critical to patients’ well being, a medication management system must be 

error free and capable of detecting various types of medication conflicts. A model is 

presented in section 5 to demonstrate the correctness of MISS.  Additionally, since 

prescriptions and health conditions are personal health information, the storage, use, and 

disclosure of this information between systems presents potential threats to patient privacy. 

As a result, privacy regulations such as HIPAA [86] must be incorporated into the 

requirements and design of MISS to provide proper privacy protection for patients’.  

The rest of this chapter is organized as follows: the requirements, design, and detailed 

architecture of MISS are presented after a discussion of related work. We then describe a 



75 

 

system model for conflict checking and compliance monitoring and illustrate MISS’s 

prototype implementation. The last section summarizes the contributions of MISS and states 

future work. 

4.3  Related Work 

Some previous efforts have been made for helping individuals manage their prescriptions. 

For example, the Magic Medicine Cabinet (MMC) [87] is an Internet-enabled medication 

manager equipped with facial recognition software, RFID smart labels, and vital signs 

monitor and voice synthesis. The MMC gives personalized reminders, detects when a wrong 

medication is taken, and measures vital signs. However, no details are provided on the 

authors’ claim that their system interacts with the patient’s pharmacy, doctors and health care 

providers, and no safety checks are made for conflicts among medications. Our work bridges 

this gap by using WS to connect the patient’s SH with the patient’s doctor and pharmacy and 

to conduct multiple checks for medication conflicts. 

The Smart Medicine Cabinet (SMC) [88], and the Smart Box [89],[90] extend the Magic 

Medicine Cabinet by using passive RFID tags to identify medication containers and 

Bluetooth technology to synchronize the MMC with  a patient’s cellular phone. The SMC is 

automatically updated when the cell phone is brought within range. The major drawback of 

these two systems is that the patient must remember to carry the cell phone to the pharmacy 

as well as near the MMC. Our system presents a more user-friendly solution, especially for 

those with cognitive impairments, in that it does not require special user interaction or a cell 

phone.  

Technology for automatic dispensing of pills also exists [91],[92], typically, manual 

configuration is needed to set notification and dispensation times. Also, the medications also 

have to be manually removed after a reminder is generated. 

All of these solutions certainly facilitate the task of taking medications, by assisting with 

prescription compliance [89],[93], giving reminders to the patient [94],[95], and detecting  

missed doses. However, they do not provide a networked solution and still require significant 

manual input, which would be difficult for patients with cognitive disabilities. This limitation 



76 

 

is addressed in [96] where a system for patients with dementia is presented. Our system 

makes a similar of related technology to help patients with prescription compliance, but our 

work is more comprehensive as it transparently networks the smart home with existing 

doctor offices and pharmacies but does not require the patients to enter any data. 

In addition to these systems, several software applications have been developed to assist 

with the medication prescribing process and the management of patients’ medical records. 

Such applications often target mobile devices such as cell phones, smart phones, and PDAs 

[97]. Nevertheless, they are intended for people with these devices and familiar do not 

provide support for safety checks for conflicting medications or assistance in monitoring 

compliance with a prescription. For patients’ record keeping, solutions, such as Google 

Health [98] and Microsoft Health Vault [99], are available to warehouse the patient’s health 

and medications records. However, it remains to be seen if patients will be comfortable 

storing personal information in remote enterprise environments. Pervasive spaces like SHs 

can be used to assist patients in performing activities of daily living (ADL) [18], but also can 

help patients with the management of their medications [66],[80],[1]. We would like to have 

a system that can integrate all these independent solutions in order to have a stronger 

management of medications. 

4.4  System Requirements and Design 

A successful medication management system must have a set of well defined requirement 

and a well planned design. The requirements and design of MISS are discussed below.  

4.4.1  System Requirements 

Describing the processes of how a person receives a prescription and takes a medication 

reveals several important system requirements.  

Obtaining a prescription involves the following steps: 

1. The patient visits the doctor. 

2. The doctor prescribed medications. 



77 

 

3. The patient visits the pharmacy and gets the medications. 

4. The patient at home intakes the medications. 

 

Medication intake involves the following steps:  

4.1 Wait for the next dosage time 

4.2 Locate the medication container 

4.3 Open the container  

4.4 Extract the appropriate amount of medication 

4.5 Intake the medication 

4.6 Close the prescription container 

4.7 Return the container to the medication cabinet 

 

The aforementioned related work can help to automate some of these steps. For instance, 

the Smart Box or Smart Cabinet can automate steps 4.1 and 4.2 and automatic pill dispensers 

address steps 4.3 and 4.4. When patients with cognitive impairment “waits” for the next 

dosage time, they might forget when the next dosage time is [96], hence a system that 

automatically sets up the dosing schedule using the prescription’s data, generates the 

reminders and notifies if a dosage is missed will help to improve the compliance with 

medication intake [80]. SH can also improve the task of locating the medications container, 

by incorporating unique identifiers for the prescription containers like RFID tags as well as a 

system that can detect these containers in the entire space [100]. 

Because manual entering of prescription information by the resident would likely be 

unreliable due to inexperience and human error, the prescription information should be 



78 

 

entered by an expert and automatically forwarded into the SH system without repeated 

manual entries at various locations such as pharmacies or the home. Thus, in MISS, 

prescription information is automatically forwarded between doctors, pharmacies, and 

homes. The next section presents the system design and operation of MISS in greater detail. 

4.4.2  MISS Design 

MISS consists of three main subsystems: the Doctor Subsystem (DS), the Pharmacy 

Subsystem (PS) and the Smart Home Subsystem (SS) which are operated by four main 

actors: the doctor, the pharmacist, the patient, and the SH, respectively. Each system is 

assumed to have a local database that stores information about the patient/inhabitation, and a 

global medication conflict database (MCD) exists that defines all conflicts between 

medications, conditions, and foods. The MCD is maintained by a knowledgeable and trusted 

third party. Figure 4.1 illustrates the interactions between these actors and subsystems. 

 

Figure 9 - Medicine information support system diagram 



79 

 

       

 

The more important use cases and actors for MISS are shown in Figure 4.2. The Update 

Smart Home action will be responsible of updating any subsystem that might use the 

medication data such as medication inventory and notifications. 

 

Figure 10 - Medicine information support system use cases and actors 



80 

 

4.4.3  Doctor’s Subsystem (DS) 

The process starts when the doctor prescribes a medication. MISS can assist with the 

prescribing process by the conflicts among medications, information that the doctor can use 

as a reference. The patient’s medical record of previous prescriptions, the current health 

conditions, and the symptoms and patient’s preferences are used to determine possible 

conflicts and reactions. This way the doctor can prescribe medications that do not create any 

conflict or allergic reactions. The lists of medications, side effects and possible conflicts can 

be retrieved from the database maintained by a trusted third party such as the Food and Drug 

Administration (FDA) [101], or the Physician’s Desk Reference (PDR) [102]. A conflict-free 

prescription will be forwarded to the pharmacy either immediately to the patient’s preferred 

pharmacy or after a request from the pharmacy that the patient will choose later. 

If the data is forwarded to a preferred pharmacy, it is assumed that the doctor subsystem 

and the pharmacy subsystem share a unique ID that will be used to identify the patient. Using 

the ID, the doctor subsystem will check its local database for conflicts with the new 

prescription. If no conflict is found, the prescription’s data is forwarded to the patient’s 

preferred pharmacy through a secure channel. The doctor’s office will also issue a 

customized printed-RFID prescription which will be used later by the pharmacy module.  

If the patient chooses a pharmacy later, the process is almost the same. The main 

difference is when the data arrives to the pharmacy. In the first case it arrives immediately in 

the second case data arrives when the patient gets into the pharmacy and the pharmacist 

request the prescription information from the doctor’s office. Now let us consider PS design 

in more detail. 

4.4.4  The Pharmacy Subsystem (PS) 

There are two possible starting scenarios for the pharmacy subsystem: When the patient 

chooses the pharmacy at the doctor’s office or when the patient chooses the pharmacy later. 

Consider the first scenario, when the patient chose a preferred pharmacy at the doctor’s 

office. The pharmacy receives the prescription’s data over a secure channel when the patient 

is still at the doctor’s office, allowing the pharmacist to start preparing the prescription before 



81 

 

the patient arrives. The pharmacy issues the prescription in special RFID-enabled containers 

that allow the system to uniquely identify the medication in them. The prescription is 

checked for conflicts with other medications that have been recently filled for the patient, 

similar to the check performed at the doctor’s module. However, this additional check is 

necessary as the patient might be receiving prescriptions from different doctors but picking 

medications from the same pharmacy. 

In the second scenario, when the patient has chosen the pharmacy manually, the patient 

arrives to the pharmacy with the printed-RFID prescription. This prescription is given to the 

pharmacist as if it is a regular prescription, but this time the prescription is ready or in 

process as the information was received previously. This printed-RFID prescription is 

scanned and the data is compared with the data forwarded by the doctor’s office. If no 

conflict is found with the new prescription, the medication is dispatched into an RFID-

enabled container; otherwise, the pharmacist is notified and doctor are notified.  

Our system can reduce the waiting time at the pharmacy if the prescription data is 

forwarded immediately from the doctor’s office allowing the pharmacist to start preparing 

the prescription while the patient is on the way. This is an excellent feature for the elderly 

population who might need their medications as soon as possible or want to avoid long waits 

or several trips to the pharmacy. Another benefit of our system is the extra layer of safety by 

double checking for conflicting medications using the pharmacy’s local data. 

4.4.5  The Smart Home Subsystem (SS) 

When the patient arrives to the SH, its local database is updated by scanning the prescription 

container with an RFID reader. If the range on the RFID reader is large enough, this requires 

no manual effort as the RFID tags will be read once the patient is within their range [103]. 

This will retrieve the prescription’s data from the pharmacy using a secure communication 

channel. After the data is received, a final check for conflicts between the new prescription 

and current medications, health conditions, and foods in the home will take place. This third 

level of checking is necessary as the patient might be receiving different prescriptions that 

are filled from different pharmacies. Also, food information is available only at home, 



82 

 

requiring this check to be done at the home. If a medication conflict or health condition 

conflict is found, the appropriate parties are notified. Otherwise, the medications are placed 

in a SMC or loaded into an automatic medication dispenser and the patient notified of any 

potential food conflicts. 

In addition to checking for the safety of a new prescription, we want the patients to 

comply with the doctor’s instructions by taking a proper dosage at the proper time. To 

evaluate patient’s compliance with a given prescription, there are two factors to consider: 

timeliness and completeness. Timeliness determines whether the medications are taken at a 

correct time, and completeness defines whether the correct dosage is taken. Formal 

definitions of the timeliness and completeness are presented later with the system model, 

which is followed with a description of how to use the context information [46] and the 

notification services [68] in a smart home to aid prescription compliance. The next 

subsection contains details on how interoperability among subsystems is provided. 

4.4.6  Interoperability by Using Web Services 

MISS is built on top of stand-alone applications already running the operations for doctors 

and pharmacies therefore interoperability among these subsystems is needed. The 

prescription information is sensitive data which will be shared among doctors or pharmacies 

only if the patient authorizes it [86]. A secure communication mechanism among subsystems 

to transfer this data becomes necessary. WS can provide this secure communication as well 

as interoperability as WS are platform and language independent and network friendly and 

secure [29]. Each subsystem will provide a secure WS to allow communication with other 

subsystems in an efficient and secure way. 

4.5  Designing for Privacy 

Because MISS stores, uses, and discloses personal health information, it is also mandatory 

that related privacy legislation such as the Health Information Portability and Accountability 

Act (HIPAA) [86] governs its design and operation. To demonstrate how this is the case, we 

identify the problematic aspects of MISS from a privacy perspective and show case by case 



83 

 

that our design is in line with the corresponding HIPAA requirements. There are essentially 

four high-level problem areas (PA) that HIPAA addresses: 

PA1. The access and use of Protected Health Information (PHI) by employees 

within a health system or health information database  

PA2. The disclosure of PHI to other systems and health service providers  

PA3. The ability of the individual to access and amend PHI  

PA4. The ability of the individual (or a governing body) to audit the uses and 

disclosure of PHI including the management of individual consent. 

 

Since MISS essentially wraps web services around existing doctor, pharmacy, and SH 

systems and integrates them with a global database, it is the disclosure of PHI among these 

systems (PA2) that is of primary concern. Implementing proper access control policies and 

other data security safeguards (PA1) are the responsibilities of the individual doctor and 

pharmacy systems and not of the MISS framework proper. If these systems correctly provide 

these mechanisms, then we can assume that only authenticated and authorized doctors and 

pharmacists can access PHI in their respective systems. Similarly, it is the responsibility of 

the original systems to provide access, amendment, and audit mechanisms that individuals 

can use to check, correct, and challenge the uses and disclosures of their PHI (PA3 and PA4). 

If these mechanisms are provided, then MISS can also wrap them with WS in a way that 

preserves the functionality of the original mechanisms but provides the interoperability and 

universal access of WS. The cases in which health information is sent between subsystems 

are 1) the transfer of information from doctor to pharmacy, 2) from doctor to home, and 3) 

from three systems to the conflict detection service. 

Case 1: Doctor Subsystem Disclosure to Pharmacy Subsystem 

HIPAA permits the disclosure of PHI to other health care services providers if they have a 

previously established relationship with the individual and the disclosed information is 



84 

 

necessary to that relationship. This rule applies to the transfer of prescription information 

from a doctor system to a pharmacy system as an identifier is transferred along with the 

prescription information. However, since the individual has chosen the pharmacy to which 

the identifier and prescription are routed, it follows that the necessary relationship between 

pharmacy and individual must exist. 

Case 2: Doctor/Pharmacy Subsystem Disclosure to the Smart Home Subsystem 

The second case in which PHI is disclosed is from either the doctor or pharmacy subsystem 

to the home subsystem following the diagnosis of a new condition. However, because the 

home subsystem is viewed as a trusted representative for the individual, it follows that the 

doctor subsystem should be permitted to disclose this information to the home. Moreover, 

this information does not contain personal identifiers. On the other hand, since the doctor 

subsystem is communicating with an individual home subsystem (i.e. the home of a 

particular patient), the communication could be reasonably used to identify the individual if 

the destination of the messages were known. Therefore, secure communication is required to 

prevent information from leaking to eavesdroppers. The incorporation of secure WS in the 

MISS framework satisfies such requirement. 

Case 3: Doctor/Pharmacy/Smart Home Subsystem to Conflict Detection Service 

The fact that the doctor, pharmacy, and home subsystems submit medical information to the 

global conflict detection service also pertains to privacy. However, because both the doctor 

and pharmacy submit completely de-identified health information (only medication and 

health conditions) for conflict detection and de-identified information is returned by this 

service, there is no privacy risk inherent to these communications. On the other hand, the 

invocation of the conflict detection service by the home system does pose a privacy threat 

according to HIPAA. The fact that the request is coming from a system operating on behalf 

of an individual could allow the owners of the conflict service to identify on whose behalf the 

service request was made, thus linking the medication or condition to the individual. The 

MISS framework mitigates this situation with two security mechanisms. First, encrypted 

communication is done between the home system and conflict detection service, preventing 



85 

 

eavesdropping. Secondly, a trusted anonymizing proxy is used by the home system to 

aggregate web traffic from multiple sources, sufficiently decreasing the likelihood that such 

information can be attributed to the original individual. 

4.6  System Architecture 

The successful operation of MISS requires proper collaboration between three independent 

subsystems: DS, PS and the SS. Each subsystem maintains separate local databases as well as 

expected functionalities required by doctors, pharmacists and patients. Information exchange 

is triggered when certain events occur that can cause conflicts among medications; however, 

only the necessary information is exchanged. In addition, it is assumed that there exists an 

external MCD containing information regarding conflicting medications, health conditions 

and food, which is maintained by trusted third parties such as FDA or PDR. 

MISS is intended to be an extension of existing DS and PS, not a replacement, and one of 

our primary goals is to maximize the interoperability of these existing systems. Since most of 

doctors’ offices and pharmacies already have some kind of computer systems to perform 

their daily functions and their respective employees are comfortable and accustomed to using 

these systems, it is essential that MISS works with different existing systems. Our system 

architecture achieves this by encompassing existing systems with wrappers, and introduces 

WS as the universal interface for communication between subsystems.  

Since a patient can visit multiple doctors and multiple pharmacies, MISS employs WS as 

the mean of inter-subsystem communications, which shields the details of internal 

implementation of each subsystem from other subsystems as long as they offer compatible 

WS.  

The architecture of MISS can be best presented in two tiers. The higher tier deals with the 

inter-subsystem communication that mimics the actual actions and interactions among 

patients, doctors and pharmacists. The lower tier describes the detailed structural make-up 

and inner operations within each subsystem. 



86 

 

The higher tier overview (illustrated in Figure 4.3), shows that MISS includes three 

subsystems, DS, PS and SS which utilize the external MCD system, assumed to be 

maintained by a trusted third party. Each subsystem provides a human computer interface 

that allows interactions with user in certain role, and a system interface implemented as a WS 

that allows communications between subsystems. 

The primary owner and user of DS (illustrated in Figure 4.4) is the doctor who, after each 

examination, enters diagnoses and prescriptions into the system as needed.  Before a 

prescription is finalized, MISS checks for medication conflicts by anonymously sending over 

the patient’s prescribed drugs and medical conditions from DS to MCD. If no conflicts with 

the new prescription are found, the prescription information is then stored into the local 

database, and forwarded to PS; otherwise a notification is given to the doctor, along with 

suggestion on alternatives. 

Once the new prescription information arrives at the pharmacy (illustrated in Figure 4.5), 

it automatically triggers the retrieval of other current prescriptions associated with the 

patient, and a check for conflicts is sent from PS to MCD. This request makes it possible to 

identify potential conflicts between medications prescribed by different doctors, who may not 

be fully aware of other drugs the patient is currently taking. Once the new prescription is 

cleared of conflicts, the pharmacist would prepare the drugs, while PS would send back a 

confirmation to DS and forward the prescription to SS. If a conflict is found, a notification is 

given to the pharmacist who might contact the doctor or take other appropriate measures.  

The SS is assumed to maintain two sets of data, the patient’s health information and the 

food inventory of the home. When the prescription is dispatched, PS would send over the 

prescription information to SS. After the patient picks up the prescription and returns home, 

the medication needs to be checked into the automatic dispenser. MISS then retrieves the 

information about the medication during this process and performs a final check for conflicts, 

including checking for food conflicts with the new prescription. Any discrepancy or conflict 

will notify the patient, the doctor and the pharmacist. Figures 4.5-4.8 describes the 

interactions within the SH subsystem. 



87 

 

 

Figure 11 - Communications between MISS and MCD 

 

 



88 

 

 

Figure 12 - Doctor Subsystem 

 

 

 

 

 

 

 



89 

 

 

Figure 13 - Pharmacy subsystem 

 

 

 

 



90 

 

 

Figure 14 - Smart home subsystem 

 

 

 

 

 

 



91 

 

 

 

 

Figure 15 - Smart home subsystem 2 

 



92 

 

 
 

Figure 16 - Smart home subsystem 3 

 
4.7  System Modeling 

This section contains a model of the medication management system to further define and 

examine conflict detection and compliance with different types of prescriptions. Model 

details for checking for conflicts and checking for compliance by fulfillment of the timeliness 

and completeness requirements are in the next sections. 

4.7.1  Model the MCD 

A medication management system must be accurate, reliable and provide safety by detecting 

conflicts that a new prescription may cause by interacting with other medications, health 

conditions, or foods. The trusted MCD defines the conflicts over the set of medications M, a 

set of food F, and the set of health conditions C using several functions over the set of 



93 

 

medications. The function conflicting_medications: M�P(M), where P(X) denotes the power 

set of X, returns the set of medications that conflict with a given medication, the function 

conflicting_conditions: M�P(C) returns the set of health conditions that conflict with a 

given medication, and the function conflicting_food: M�P(F)  returns the set of foods that 

conflict with a given medication. We define the Medication System Model as follows: 

Definition 

Our Medication System Model consists of the following sets: 

− M, set of medications 

− C, set of medical conditions 

− F, set of food 

− D, doctors, hospitals or clinics the patient visits 

− P, set of pharmacies where the patient gets prescriptions 

− H, the patient’s Smart Home 

 

With the following functions: 

− conflicting_medications: M�P(M) 

− conflicting_conditions: M� P(C) 

− conflicting_food: M� P(F) 

 

A patient p is represented by a tuple p = (id, Mp, Cp, Fp, CMp, CFp, CCp). The id field 

uniquely identifies the patient, and �� � �, �� � �, �� � � be the subset of medications 

currently prescribed to patient p, the health conditions diagnosed to patient p, and the foods 



94 

 

patient p has available in the smart house, respectively. The sets of medicines, conditions, 

and foods that are unsafe for patient p can be defined as follows:  

• ��� � � �	
��
��

�_���
�

���������  represent the set of medications that 

conflicts with the medications prescribed to patient p,  

• CCp = � �	
��
��

�_�	
�
�
	
��������  be the set of medical conditions that 

conflicts with the patient’s medication.  

• CFp = � �	
��
��

�_�		���� ���� be the set of food that conflicts with the patient 

medications.  

These sets will allow doctors or caregiver can make better informed decisions when 

prescribing medications for a new or existing health condition. Given a newly prescribed 

medication m to patient p, the MCD determines what conflicts with m by applying the three 

conflict functions to m. If we let the sets of potential conflicts of new medication m be 

�� � �	
��
��

�_���
�

����� , �� � �	
��
��

�_�	
�
�
	
����,  and �� �

�	
��
��

�#$$%���, respectively, m can be determined to be a safe medication if  

1. �� �  �� �    and � �  ��� �     - None of p’s current medications conflict 

with the new medication and the new medication does not conflict with any of p’s 

current medications and 

2. �� � �� �  , - The new medication does not conflict with any of the conditions 

that patient p has) and  

3. �� �  �� �     -  The new medication does not conflict with any of patient p’s foods 

If all three checks succeed, then we update the patient’s set of current medications as well 

as the patient’s conflict medications, conditions, and foods accordingly 

4.7.2  Conflict Checking 

Each MISS subsystem, DS, PS, or SS, checks for conflicts with almost the same algorithm, 

but it is expected that each one can capture a different set of conflicts because of differences 



95 

 

in the local databases. A generalized version of the conflict checking algorithm and 

supporting functions are defined as follows:  

 

Definition: Get Data (GD) 

Input: Prescription r = (p, m) 

//Get patient’s p data from the local database 

Query Mp, Cp, Fp, CMp, CCp, CFp 

//Get medication m conflicting data from the global database 

Compute ��, ��, �� 

 

Definition: Conflict Checking (CC) 

Input: Prescription r = (p, m) 

Call Get Data (r) 

If (�� � �� �   and � � ��� �  ) 

   If (�� � �� �  ) 

      If (�� � �� �  ) 

         //No Conflict found 

         ��� �  ��� !  �� 

         ��� �  ��� !  �� 

         ��� �  ��� !  ��          

      Else 



96 

 

         Medication m creates food conflict  

   Else 

      Medication m creates a health condition conflict 

Else 

   Medication m creates a medications conflict 

4.7.3  Conflicts at Doctor, Pharmacy, and Smart Home Subsystem 

In this model the DS provides a new prescription r = (p, m) that r contains the id of the 

patient p and the id of medication m. The DS has a local database with patient’s p record. The 

DS does not to store information related to food, therefore the checking at DS focuses on 

identifying conflicts between medications and health conditions. To perform this checking, 

we invoke the function CC with input r. If no conflict is found then the prescription r is 

forwarded to the PS.  

At the PS, it is assumed that the prescription r has already been checked and cleared at 

the DS. The PS matches the new prescription r with the patient’s local record of previous 

prescriptions and over-the-counter medications to check for possible conflicts. This second 

check is necessary as the patient might have prescriptions filled from multiple doctors. Over-

the-counter medications may also be obtained at pharmacies and may also cause conflicts. 

The checking at the PS is performed by calling function CC with input r using the 

pharmacy’s dataset. If no conflict is detected, the prescription r is cleared and forwarded to 

the SS. 

Once the SS receives the prescriptions r SS performs a final check for conflict using its 

local inventory of medications, conditions, and food. This check is necessary as the patient 

might be having prescriptions from different doctors filled at different pharmacies. These 

remaining types of conflicts are the ones that the SS will be responsible of detecting. Figure 

4.9 shows and examples of these multiple paths of conflicts. It illustrates how a patient might 

be visiting different doctor’s and pharmacies in which case some conflicts might go 



 

undetected, but the SH can detect them. It also illustrates how conflicts can be detected 

in the process as each subsystem performs a safety check.

 

Figure 17 - Multiple paths of conflicts

 
4.8  Compliance Monitoring

There are two aspects to determining if a patient is complying with a given prescription: if 

the right medication is being taken in the right dose at the right time 

former requirement completeness

we currently make the assumption that the smart home has the capability to determine if a 

correct dose of medication was taken. This is not an unreasonable assumption if automatic 

dispensers are used to distribute t

take all of the medication given them. On the other hand, timeliness proves to be a much 

more complicated issue. 

Different medications often come with different types of intake instructions requi

medication management system to keep track of which medicines should be taken and when. 

For this chapter, we study the three common categories of prescription instructions 

listed below: 

1. Do not take more than dosage 

97 

undetected, but the SH can detect them. It also illustrates how conflicts can be detected 

in the process as each subsystem performs a safety check. 

Multiple paths of conflicts 

Compliance Monitoring 

There are two aspects to determining if a patient is complying with a given prescription: if 

e right medication is being taken in the right dose at the right time [104]

completeness and the latter as timeliness. For completeness monitoring, 

we currently make the assumption that the smart home has the capability to determine if a 

correct dose of medication was taken. This is not an unreasonable assumption if automatic 

dispensers are used to distribute the correct dose of medication and patients can be trusted to 

take all of the medication given them. On the other hand, timeliness proves to be a much 

Different medications often come with different types of intake instructions requi

medication management system to keep track of which medicines should be taken and when. 

, we study the three common categories of prescription instructions 

Do not take more than dosage d within time interval t 

undetected, but the SH can detect them. It also illustrates how conflicts can be detected early 

 

There are two aspects to determining if a patient is complying with a given prescription: if 

[104]. We call the 

. For completeness monitoring, 

we currently make the assumption that the smart home has the capability to determine if a 

correct dose of medication was taken. This is not an unreasonable assumption if automatic 

he correct dose of medication and patients can be trusted to 

take all of the medication given them. On the other hand, timeliness proves to be a much 

Different medications often come with different types of intake instructions requiring a 

medication management system to keep track of which medicines should be taken and when. 

, we study the three common categories of prescription instructions [105] 



98 

 

2. Take dosage d every time interval t 

3. Take dosage d before (or after) activity a 

In the following discussions on timeliness, it is assumed that the system has the capability 

to detect when medications are taken and deduce related context information about the 

patient, such as if the patient has recently had a meal or is in the process of going to bed. It is 

also assumed that the system is able to dispense medications and is able to notify patients and 

doctors based on prescription instructions and a patient’s intake actions. 

For the first category of prescription instructions (“do not take more than dosage d within 

time interval t”), we need to keep track of the amount and time of medication intake. To 

monitor this condition, we use a common concept of a sliding window to create a 

Prescription Sliding Window (PSW) that continuously adds the amount of the given 

medication taken in a given time period as follows. When a patient intakes a medication, the 

system generates an intake event e that consists of the medication taken m, the dosage de of 

m, and a timestamp te. Each time an intake event occurs, MISS looks into the PSW, which 

covers the events from te-t to te. If the accumulated dosage ∑de’| ∀e’ such that te-t ≤ te’ < te 

exceeds permitted dosage d, an overdose exception xod is generated and the appropriate 

healthcare professional notified. In the actual implementation, the SS subsystem of MISS 

keeps a separate PSW queue for each medication , and when an intake event occurs, is 

inserted to the corresponding queue and the accumulated dosage updated. The queues are 

maintained in a lazy fashion, meaning that MISS does not proactively remove intake events 

prior to te’ - t but only purges events when a new intake event occurs and the time period of 

the PSW does not include them (i.e. they are outdated). 

For the second category of prescription instructions (“take dosage d every time interval 

t”), the patient is required to space out the medication intake by a certain interval of time. 

These intervals are setup when the patient intakes the medication for the first time, which we 

label t0. Using t0 as the starting point, the subsequent intake events tn should occur at tn = t0 + 

nt for n=1 to the size of the prescription. However, instead of requiring the patient is to take 



99 

 

the dose at exactly some time tn, we allow a patient to take a dose at approximately time tn, 

providing a little bit of flexibility for the patient. To accommodate this flexibility, we 

introduce the concept of timing tolerance. We define tolerance tol as, given a scheduled time 

te for administering a dosage, the patient should take the medication at within some time 

interval which deviates from te by at most tol. In other words, only medications taken within 

the time interval [te –tol, te + tol] would satisfy this timeliness requirement. Any medication 

intake outside of [tn –tol, tn + tol] would be considered a violation to the prescription 

instruction. For most medications, this tolerance is in the order of minutes. However, should 

the patient miss a medication intake in a given tolerance time interval, the patient and the 

doctor are notified. The system can then adjust the schedule of medication, that is establish a 

new set of time intervals, based on a newtime t0’ when the patient takes the first dosage after 

missing the previous dose. When the patient takes the medication, the system monitors if the 

dosage dtn at time tn corresponds to the prescribed dosage d. Figure 4.10 shows a visual 

representation of these intervals. 

 

Figure 18 - Timeliness intervals: take dosage d every time interval t 

 

For the third category of prescriptions (“take dosage d before (or after) activity a”), the 

scheduled time for a patient to take the medication is relative to a certain activity that the 

patient performs, such as eating a meal or preparing for bed. We will use the same notation 

as in the previous discussion, assuming the patient takes the medication at time te, and the 

timing tolerance is tol. If the prescription instruction dictates “taking medication with dosage 

d before activity a,” the system checks back at te + tol to see if activity a has occurred since 



100 

 

te. On the other hand, if the medication is supposed to be taken after an activity a, the system 

first check if the time of occurrence ta of activity a falls into the time interval te - tol. In the 

former case, the system notifies the patient of the medicine intake if the desired activity is 

detected as starting, and in the latter case, the system dispenses the medication and reminds 

the patient to take medication at the completion of the activity a. If the medication intake 

event e does not occur within the tolerance period, the patient would have violated the 

prescription instruction which would trigger notifications to the patient as well as the doctor. 

Figure 4.11 shows a visual representation of these intervals.  

 

 

 

Figure 19 - Timeliness intervals: take m before activity a, take m’ after activity a’ 

 
4.9  Prototyped Implementation 

The prototype implementation in our SH Lab shows the feasibility of MISS. The Doctor, 

Pharmacy and SH Subsystems have been implemented as follows. An application for 

entering the prescription details, checks for conflicts, and store patient’s record acts as the 

doctor’s module. This node forwards the data to another node which corresponds to the 

pharmacy. The pharmacy receives the data, prepares the prescription and assigns an RFID 

tag to the prescription. Another node acting as the SH, queries the pharmacy’s using the 



101 

 

RFID tag as the key and downloads the specific information about the prescription. Phidget 

RFID reader is used to perform the reading [72]. Different RFIDs assigned to several 

containers were tested as a patient might be taking different medications. This data the SH 

stores it in its database to use it to update other subsystems such as the reminder, notification 

and medication inventory. When a conflict is detected the corresponding message is 

displayed and notifications are given [68]. The Smart Home Subsystem was developed as a 

bundle that runs is OSGi, a framework particularly suitable for SH applications [46]. The 

flow of data was correctly transferred from the Doctor’s node all the way to the SH and the 

experimental conflicts were correctly detected. 

To have interoperability uses WS to communicate among subsystems. The DS uses WS 

in to access the third-party conflicts definition database. It also uses WS to communicate and 

send the data to the pharmacy. A WS is also provided so that a patient can have access to his 

or her record at any given time with the appropriate authentication mechanism. Likewise the 

pharmacy makes a similar use of the WS technology. It accesses the third-party conflicts 

definition database via WS. It also provides a WS for the doctors to establish a connection 

and forward prescription data. It also provides another WS so that the patient can access his 

or her record at any given time with the appropriate mechanism. 

The SS makes use of the WS provided by the DS and the PS in order to keep a more 

complete record of the resident’s medications, health conditions so that a final and more 

thorough check for conflicts can be performed at the house. It is made this way to respect the 

privacy concerns and laws such as HIPAA in case data is forwarded to the wrong party. The 

SH also has a mechanism to check not just for conflicts but also with compliance with the 

medication instructions. Timeliness and compliance requirements are enforced by using the 

prescription’s data to define what to monitor, and the context information provided by the 

SH. Also because the pervasiveness of RFID remains in the future, we developed two 

parallel implementations: one using barcodes another one using RFID. This allows MISS to 

be used with current barcode technology and with the future RFID technology. 

 



102 

 

4.10  Conclusion and Future Work 

The SH is equipped with technology to help the elderly and person with special needs 

perform activities of daily living, live more independently, and stay home longer. One vitally 

important activity of daily living is the management of medications. Several solutions have 

been proposed to help with medication management, but they tend to be non-networked and 

neglect the safety problems that arise from taking multiple medications, such as having 

medications interact with each other and knowing when to take each medication. This 

chapter presents MISS, a more comprehensive solution for successful medicine management 

that uses web services to provide interoperability among independent and existing medical 

systems and can detect conflicts among a patient’s medications, health conditions and foods. 

Because patient’s preferred doctors and preferred pharmacies may vary, the safety checking 

is enforced at multiple levels to catch more types of conflicts. We also investigate 

compliance with several types of prescription dosing instructions by monitoring intake 

actions with respect to the timeliness and completeness of each dose. We use modeling 

techniques for both the safety checking and for the compliance monitoring.  

Our future work for this system includes completing the integration between OSGi and 

WS as well as the implementation of the compliance checking routine. We are also applying 

formal techniques to further model and verify the compliance and safety of the entire system 

and are looking to perform a case study with medical experts to validate the usefulness of our 

design. 

  



103 

 

CHAPTER 5.  A COMPOSITION FRAMEWORK FOR SERVICES OF 
HETEROGENEOUS SERVICE-ORIENTED ARCHITECTURES 

 
 

 
5.1  Abstract: 

Service-Oriented Architecture (SOC) is a paradigm widely used to ease the development of 

applications such as those in pervasive spaces. Within the SOC paradigm, different Service 

Oriented Architectures (SOAs) have been developed. It is often the case that required 

services are implemented using different SOAs. Most composition frameworks take a two-

tier approach: those that support a single SOA take advantage of service compositions and 

runtime substitutions, while those supporting services of different SOAs usually manage their 

interactions with manual service invocations. Some SOAs offer a set of features that others 

do not. In this chapter, we present a platform, language, and SOA-independent composition 

framework. Our framework accepts candidate services of heterogeneous SOAs and provides 

the functionalities to support composition of these. A case study and a performance analysis 

are presented to evaluate our framework. 

5.2  Introduction 

service is defined as an autonomous, loosely coupled, platform independent entity that can be 

described, published, discovered, and invoked. Services can perform a simple computation or 

compose a set of services to perform a complex task [1]. Service-Oriented Computing (SOC) 

is a programming paradigm where functionality is provided as services and applications are 

created by combining these services in a certain logical way. Instead of depending on a single 

component as the case of stand-alone applications, several services are orchestrated to 

provide the desired functionality. A fundamental characteristic of SOC is the separation of 

the service implementation from the service specification. There exist several Service-

Oriented Architectures (SOAs) for this purpose, which define the specification of services 

and the protocols to interact with them. SOAs are designed to be loosely coupled, platform-

independent and language-independent. Theoretically, services should be able to interact 

with other services as long as they have compatible interfaces. However, in practice it is 

difficult for services implemented using different SOAs to interact as each SOA definitions 



104 

 

are independent and their services depend on those specific definitions. Interactions and 

composition of services are possible within the same SOA but are difficult across different 

architectures. 

Most research in SOA has focused on investigating web services (WS) [2]. Consequently, 

WS technologies and protocols are well studied and defined. Nevertheless, there exist several 

other SOAs such as Jini, Open Services Gateway initiative (OSGi), and Universal Plug-and-

Play (UPnP). Certain properties of these other SOAs make them a better choice for certain 

applications, such as Jini’s modular co-operating services for construction of distributed 

systems,  OSGi bundles to control embedded devices, and UPnP services for plug-and-play 

networking with devices. To realize the full potential of the SOC paradigm, it should be 

possible to create composite services without depending on a particular SOA. We believe 

that the SOA standard should be able to accommodate and utilize different services, 

regardless of the particular languages, platforms, and architectures they are based on. Doing 

so could have a positive impact in the quality of service-oriented applications. For example, 

it can increase the number of potential services, which might impact the availability of 

services. Having more services available can also increase the number and the diversity of 

potential applications. Having a greater number of services to perform certain actions can 

improve the quality of the composite service by choosing those that better meet certain 

quality criteria. Additionally, composition of heterogeneous SOAs services can influence the 

performance of the application, as the services chosen can be those that show better 

performance without limiting only to those of a particular SOA. It can also improve 

reliability and substitutability, by having a set of services that provide the same functionality 

but implemented using different SOAs. In the case of service failure another equivalent 

service can be selected and still be able to perform the required task. 

The contributions of our work include outlining and justifying a set of minimum 

requirements for compositions. These requirements are elicited based on a study of the 

standardization and composition strategies for SOAs. We believe that there is a great need of 

specific requirements especially in the area of compositions of services from heterogeneous 

SOAs and for the scripting languages used to specify composites. We contribute and define 



105 

 

the Simple Service Composition Language (SSCL), a language compliant with these 

minimum set of requirements and inspired in technology currently under use. SSCL is an 

XML-based language used to specify the workflow of composite services in a simple way 

that provides SOA independence, a key attribute for heterogeneous SOAs compositions. Our 

major contribution is an automatic composition framework that accepts a composite service 

description in SSCL as input and automatically produces an implementation of the composite 

service. The framework automatically searches the services needed, performs a safety check, 

creates the composite service implementation relying on services of heterogeneous SOAs, 

deploys the composite service, and starts it. One crucial step for the automation of our 

framework is having a service registry with all the candidate services. A customized registry 

based on the Universal Description Discovery and Integration (UDDI) for WS is provided 

that allows storing the information of services of different architectures. We also contribute 

with a context-aware mechanism for our framework that allows it to select among the 

services already in the context or search for services in the repository, and choosing the 

candidate service that improves performance when several services match the search criteria. 

The performance of the services is determined by studying the different SOAs, performing 

different experiments and studying the obtained results. An implementation of our 

composition framework is provided that supports OSGi and WS as an example. A guideline 

on how to extend the composition framework to support other SOAs is provided. 

The feasibility of our composition framework is shown in a case study that compares the 

automatically generated composite service with current SOA composition strategies. The 

example used is based on the Medicine Information Support System (MISS) for Smart 

Homes [3]. As pervasive environments like the Smart Homes relies on the use of services, 

we believe this is an appropriate scenario. Several experiments are designed and conducted to 

measure the performance of the composition framework and a summary of the results is 

presented. 

5.3  Related Work 

Composition of WS is a topic that has been studied in the last few years yielding a series of 

strategies and tools to make it possible, yet several challenges still need attention [4]. Some 



106 

 

of these challenges are coordination, transaction, context awareness, conversation handling, 

execution monitoring, and infrastructure. Service compositions can be achieved using 

different strategies such as static, dynamic, model driven, declarative, automated, manual, 

and context based. In the literature, different scenarios are found that motivates the interest in 

performing service compositions as well as several frameworks that manually, semi-

automatically, or automatically create composite services. Examples of these composition 

frameworks are e-flow, MAIS, MOEM, SELF-SERV, OntoMat-Service, SHOP2, 

WebTransact, and StarWSCoP [5]. Dustdar and Schreiner point out that no single 

composition framework satisfies all the needs for automatic WS composition [4]. The reason 

is that some frameworks implement a set of features or focuses on a particular issue 

overlooking the others. A more inclusive composition framework is still needed. In our work, 

we propose an automatic composition framework that tackles several of these issues by using 

a combination of strategies. Our framework pays special attention to infrastructure and 

context-awareness using dynamic, declarative, and context-based strategies. 

As the number of individual services grows and applications become more complex, 

automated composition of services becomes more critical. In many cases, an individual WS 

does not completely satisfies certain requirements but when combined with other WS in a 

logical order, the composite service does. Currently, finding these individual services is a 

challenge as more organizations provide functionalities as new WS, resulting in an explosion 

of the number of services available. Searching for the appropriate services and ways to 

combine them has become a problem beyond the human capability due to the size of the 

search space and the dynamicity of services as they are added, removed, or updated on the 

fly. The need for automatic WS composition becomes evident and critical. Rao and Su in [6] 

survey two main approaches to achieve automated WS composition: workflows and artificial 

intelligence (AI) planning. With the workflow approach, the user provides a workflow of the 

intended composite service and the system automatically locates the individual services that 

satisfy the workflow execution. Some platforms that use the workflow approach are e-Flow 

[5] and Polymorphic Process Model (PPM) [8]. With the AI planning approach, the 

developer gives a set of constraints and preferences and the system generates the flow and 



107 

 

finds the candidate services [9]. The strategies used in AI planning include situation calculus 

[10], planning domain definition languages (PDDL) [11], rule-based planning [12], and 

theorem proving [13]. Some of the tools available that support AI planning service 

composition are SWORD [14], SHOP2 [15], and DAML-S (also known as OWL-S) [16]. No 

matter what composition approach is chosen, they all should provide the presentation of a 

single service, translation of the languages, generation of composition process model, 

evaluation of composite service, and execution of composite services. One observation is that 

most of these composition frameworks use abstract representations of services. In our work, 

a framework is provided that composes actual services using workflow techniques. 

Several research works have proposed solutions for the problem of automatically 

composing services in other SOA such as OSGi. Wood et. al. in [17] presents a framework to 

achieve spontaneous compositions of OSGi services. It provides functionality to handle 

availability of services, links to connect to the services and matching criteria for selecting the 

best available service. Redondo et. al. in [18] use the Business Processing Execution 

Language for Web Services (WS-BPEL), to describe the workflow of OSGi composite 

services. They provide a framework that extends OSGi by allowing it to interpret WS-BPEL 

files, locate the services, and create the composite service. Their framework adds tags to the 

WS-BPEL file and focuses on composing OSGi services only. Anke and Sell in [19] present 

a strategy for automatically composing OSGi services by first converting them to WS and 

then use WS composition techniques. Our work is different, as we want to compose services 

of heterogeneous architectures in their original form without the need for converting them. 

Other researchers have focused on the problem of composing heterogeneous SOAs. Lee 

et. al. in [20] support WS-BPEL for workflow description and allow composite services to 

use OSGi services and WS. In their work, they add a set of custom tags to the WS-BPEL file. 

These tags specify the service type (OSGi or WS) and the binding information like the URL 

of the WSDL file or the location of the OSGi bundle. Our approach is different as the service 

type and binding information are automatically gathered from a service repository without 

the need for extra tags. Therefore, the service specification file needed in our framework is 

simpler, less verbose, and more interoperable. As there is no need to provide details about a 



108 

 

service in the workflow specification file, this allows our framework to be extendable to 

other SOAs. A similar approach is followed by technologies such as the Service Composite 

Architecture (SCA) [20] found in frameworks such as Apache Tuscany [21], Fabric3 [22] 

and the Newton Framework [23]. The basic unit in SCA is a component, which is a service 

developed using any accepted SOA such as OSGi, WS, and Spring. SCA offers a framework 

in which the developers can create composites using services with heterogeneous 

implementations. They rely on annotation and a special XML language, the Service 

Component Definition Language (SCDL), to define the components and the composites. The 

problem with SCA is that the tags and annotations have to be included in the source code of 

the services for the framework to accept them. This limits the services that can be used to 

only those developed under a SCA infrastructure. Our work is different as we use the 

services in their original implementation, allowing to reuse services already available and 

without the need to add annotations to the source code. 

5.4  Requirements for SOA Compositions 

The composition framework is required to be platform, language, and SOA independent. It 

should support heterogeneous SOAs and automatically create composite services. Even when 

the SOC standard already provides for platform and language independence, composition 

strategies are usually limited to services belonging to the same SOA. Other composition 

strategies that support multiple SOAs such as the SCA [24] use annotations to connect the 

services together. This approach limits the set of services that can be used to only those with 

the appropriate annotations. A composition framework should respect the fundamental SOA 

requirements of separation of service specification from the implementation. A composition 

framework should offer language independence, SOA independence and not depend on the 

use of annotations in the source code of the service. 

Several standardization bodies make efforts to come up with a SOA standard but there is 

a need for refinement on some aspects of this standardization. The OASIS-OPEN has defined 

the Reference Model for Service Oriented Architecture [25] to encourage the continued 

growth of different and specialized SOA implementations whilst preserving a common layer 

of understanding about what SOA is. In their Reference Model, they define the techniques 



109 

 

for composition of services, with orchestration as the main methodology. They define 

orchestration as “a technique used to compose hierarchical and self-contained service-

oriented business processes that are executed and coordinated by a single agent acting in a 

‘conductor’ role”. These orchestrations are automated by using a business process 

orchestration engine. These orchestration engines are hardware or software components that 

act as the central coordinators for executing the flows that comprises the orchestration. The 

flow for the orchestrations typically is described using a scripting language. The SOA 

standard assumes that the software or hardware orchestration engine executes the process 

flow specified in the scripting language. However, this standard only gives a high-level 

definition and does not provide specific requirements for the scripting language or for the 

orchestration engine. Therefore, we studied the SOA standard and several SOAs to identify 

this set of minimum requirements. 

We carefully study the characteristics of various SOAs, focusing especially on WS and 

OSGi architectures and looking for desirable features for our composition framework. WS 

has been the main subject of research in the SOA community to the point that some works 

use the terms SOA, SOC, and WS interchangeably. Consequently, WS is a strong, widely 

adopted technology whose protocols, tools, and strategies are well defined. One of these WS 

protocols is WS-BPEL, a language for describing composite services and workflows. This 

protocol has become the de facto standard for WS compositions. Several orchestrations 

engines are examined that use WS-BPEL as their input language. Other important SOA is 

OSGi, whose standard defines a framework for the deployment of services packaged in 

deployment units called bundles. Several open-source and commercial implementations of 

the OSGi framework are available such as Eclipse Equinox [26], Knoflerfish [27], and 

Apache Felix [28]. One of the main features of the OSGi standard is the security layer it 

provides, as the OSGi framework runs as an isolated Java Virtual Machine. The OSGi 

framework provides dynamic installation and removal of bundles without the need to stop or 

restart the system. The OSGi standard defines a set of default bundles including a HTTP 

server and log service that are useful to support other SOAs. 



110 

 

A set of essential features have been identified for our heterogeneous SOA composition 

framework after studying the SOA standard and different architectures. Several essential 

features are shared by the different SOAs and orchestration methodologies, while some 

features are lacking in one SOA or the other. One of these essential features needed is a 

SOA-independent orchestration language for compositions. This composition language must 

support variables and standard data types such as string, integers, and Booleans. This 

composition language should also provide the means to specify the candidate services using 

their interface name. The language should also support sequential execution of commands 

including invocation of a service, variable assignments, decision structures and a repetition 

structures. 

An orchestration engine that understands this language and creates the implementation of 

the composite service is needed. The orchestration engine should be capable of supporting 

services from heterogeneous SOAs and to create the composite service implementation 

transparently and automatically without requiring the user intervention. The performance of 

the composition framework is very important. Therefore, the overhead added should remain 

low and the framework design and implementation should maximize services performance. 

The services performance is determined based on the features of each SOA and by 

experimental results. The next section describes the syntax of our proposed new language 

used for describing composite services. 

5.5  The Simple Service Composition Language (SSCL) 

In this section, we define the syntax of the Simple Service Composition Language (SSCL). 

The language SSCL is inspired on the syntax of the Business Processing Execution Language 

for WS (WS-BPEL) and the simplicity of the Service Component Definition Language 

(SCDL) for SCA. This new language is different especially as it provides a simplified and 

SOA-independent way to specify composite services workflows. SSCL is straightforward to 

learn and has the necessary set of commands to perform the functionalities required for 

composition of services. Developers that already know WS-BPEL and SCDL will find SSCL 

familiar while new developers should be able to learn it quickly.  



111 

 

The SSCL syntax follows their counterparts WS-BPEL and SCDL with several unique 

features that simplifies it and allows it to support heterogeneous services descriptions. One of 

these differences is the syntactical simplicity of the SSCL commands. The names of the 

commands and tags are similar to those found in WS-BPEL, but less attributes and tags are 

required. This makes SSCL less verbose and easier to learn and understand. SSCL supports 

commands and tags that are familiar to developers of many programming languages such as 

if, variables and while, but does not support SOA specific commands and tags such as WS-

BPEL reply, flow, and correlation or SCDL implementation, binding, and reference. This 

makes SSCL more independent, simpler, and convenient. With SSCL, variables can be 

specified as a comma-separated list of variables in a single attribute entry. In WS-BPEL one 

attribute has to be specified for every variable, which makes the specification file more 

verbose, confusing, and harder to parse and process. Another difference is that SSCL 

supports Java-style specifications for logical symbols. The comparisons can be specified 

using the familiar symbols <, <=, ==, >, >= and != just like in many other programming 

languages, while in WS-BPEL these are specified using special codes. This makes SSCL 

easier to write and read. The skeleton of a SSCL file is provided next, followed by the details 

for each command: 

SKELETON OF A SSCL FILE: 
<process name = “process_Name” tagetNamespace = “targetNamespace_URL” > 

<partnerLinkTypes> 

<partnerLinkType name = “service_ interface_ name”/> … 

<partnerLinkTypes> 

<partnerLinks> 

<partnerLink name="service_name" partnerLinkType=" service_ interface_ name"/> …  

</partnerLinks> 

<variables> 

<variable name="variable_name" type="xsd:TYPE"/>… 

</variables>  

<sequence name = “main”> 



112 

 

A SET OF THESE COMMANDS 

<invoke partnerLink="service_name" operation="method_name"  

inputVariable="input_variable(s)"  outputVariable="output_ variable(s)" /> 

<assign> 

 <copy> 

   <from>variable_name or value</from> 

       <to variable="variable_name"/>  

  </copy> 

</assign> 

<while > 

  <condition>  CONDITION </condition> 

  ACTIONS… 

 </while> 

<if > 

  <condition> CONDITION </condition> 

  ACTIONS… 

<elseif>  

  <condition>  CONDITION </condition> 

  ACTIONS… 

</elseif>… 

<else>  

  ACTIONS… 

</else> 

</if> 

<repeatUntil> 

  ACTIONS… 

   <condition> CONDITION </condition> 

</repeatUntil> 

<forEach counterName="N"> 

  <startCounterValue> VALUE </startCounterValue> 



113 

 

  <finalCounterValue> VALUE </finalCounterValue> 

  <scope> ACTIONS … </scope> 

</forEach> 

</sequence> 

</process> 

 

The first tag in SSCL is the process tag that has two attributes: name and 

targetNamespace. The mandatory name attribute indicates the name of the composite service 

that the composition framework will later use to define the composite service interface. The 

optional targetNamespace attribute indicates the URL of a namespace with qualifying 

elements and attribute names. 

The partnerLinkTypes tag encloses a series of partnerLinkType sub tags. Each 

partnerLinkType sub tag has a mandatory name attribute that indicates the name of a 

different service interface. The composition framework uses these service interfaces to select 

the candidate services. 

The partnerLinks tag encloses a series of partnerLink sub tags. Each partnerLink sub tag 

defines an instance of a service. The partnerLink has two mandatory attributes: name and 

partnerLinkType. The name attribute indicates the name of the instance of the service and the 

partnerLinkType indicates the service type. 

In SSCL, variables are defined with the variables tag that encloses a series of variable 

sub tags. Each variable sub tag defines a unique variable and has two mandatory attributes: 

name and type. The name attribute indicate the identifier for the variable and must be unique. 

The type attribute indicates the data type of the variable. SSCL supports standard data types 

such as integer, Boolean and string, and others that are part of the XML Standard Data Types 

[106]. 

The orchestration logic that supports sequential execution of commands starts with a 

sequence tag, which is mandatory and has a name attribute. Usually the value “main” is 



114 

 

assigned to the name attribute, indicating the beginning of the orchestration logic. The 

sequence tag encloses a series of commands that define the composite service operation. 

One of these commands supported is invoke, used to make calls to the methods of a 

services. It has four attributes: partnerLink, operation, inputVariable, and outputVariable. 

The partnerLink attribute indicates the name of the service to invoke, as defined in the 

partnerLinks tag. The operation attribute indicates the actual method of the service to invoke. 

The inputVariables attribute indicates the variables that the method takes as arguments. The 

outputVariable attribute stores the result returned by the service after the method invocation.  

The assign command is used to copy the content of a variable or a constant value into 

another variable. Assign does not have any attributes but it has a copy sub tag, which includes 

two sub tags: from and to. The from sub tag indicates the variable or constant to copy the 

value from, while the to sub tag indicates the variable where to copy to. The to sub tag has 

the variable attribute that indicates the name of the variable to copy to as defined in the 

variables tag. 

The if command is a decision structure that executes a series of actions depending 

whether a Boolean condition evaluates to true or false. The if tag have several sub tags. The 

condition sub tag indicates the condition criteria, which can be a Boolean variable or a 

Boolean expression. Following the condition, the ACTIONS block indicates a series of 

commands to execute when the condition evaluates to true. There is also the elseif sub tag 

that evaluates another condition in case that the previous one evaluates to false, with its 

corresponding ACTIONS block. Several elseif sub tags may be included. Finally, the else sub 

tag ACTIONS block is executed if all previous conditions evaluate to false. 

The while command is a loop structure that executes a series of statements while a 

condition remains true. The while tag has a condition sub tag and an ACTIONS block. The 

condition sub tag indicates the condition criteria to evaluate before entering a new iteration. 

The ACTIONS block contains the series of commands to execute while the condition remains 

true.  



115 

 

The forEach command is a loop structure that executes a series of commands a 

predetermined number of times. It has the attribute counterName, and the sub tags 

startCounterValue, finalCounterValue, and scope. The counterName attribute indicates the 

variable that will keeps track of the iterations. The startCounterValue attribute encloses the 

initial value for counterName. The finalCounterValue attribute encloses the final value for 

counterName. The scope sub tag encloses an ACTIONS block with the set of commands to 

execute. 

The repeatUntil command is a loop structure that executes a series of commands at least 

once and until a condition evaluates to true. It has an ACTIONS block followed by a 

condition sub tag. The ACTIONS block indicates the set of commands to execute. The 

condition sub tag indicates the condition to evaluate. 

As already mentioned, standardization effort has focused mainly on WS standards with 

other efforts in technologies like SCA and OSGi. However, all of them have failed to define 

a general guideline for compositions of services from heterogeneous SOAs. We believe 

SSCL will be of great help to filling this gap, and SSCL can be part of the SOA standard as it 

provides the functionality needed, it is easy to understand, and provides SOA- independence. 

The formal syntax of SSCL is presented in Appendix A. 

5.6  The Composition Framework Details 

At a high level, our composition framework works as follows: accepts a composite service 

workflow description in SSCL, locates the candidate services from the context information or 

by looking into the service repository, models the service specification, checks safety criteria, 

automatically creates the composite service implementation, and installs the new composite 

service. The composition framework is developed under the OSGi platform implemented as 

an OSGi bundle, providing support for OSGi services composition. To provide support for 

WS composition, a bundle that handles all WS protocols is developed. By combining them 

our framework provides support for heterogeneous SOAs, using OSGi services and WS as 

examples. The composition framework uses several other bundles and resources in order to 

support SSCL, manage the service repository, find services already in use, model check the 



116 

 

service specification, and create the actual implementation. Our composition framework 

combines several WS and OSGi protocols and adjust them to support both technologies and 

allow composing heterogeneous SOA services. The result is a composition framework 

implemented as an OSGi bundle that supports seamless composition of SOAs. Our 

composition framework automatically performs all the underlying processing, maintains the 

OSGi services and the WS in their original implementation and produces the composite 

service implementations as OSGi bundles. This differs from previous solutions that transform 

services into another SOA or add tags to the services source code. Figure 5.1 depicts the 

architecture of our composition framework. As it accepts a SSCL file and produces an OSGi 

bundle, the framework is named SSCL2OSGi. The next sections summarize the other 

bundles developed, the modifications needed, and a guideline to expand the framework to 

accept other SOAs. 

 

Figure 20 - The SSCL2OSGi Composition Framework Architecture. 



117 

 

5.6.1  WS_FULL Service: 

Our framework focuses on creating composite services based on the functionality desired and 

not on a particular architecture. The interactions with WS are examined in order to provide 

full support to this SOA. Our main interest is to have OSGi services to be able to invoke WS 

and vice versa. In our early experiments, we developed WS composites as stand-alone 

applications and wrapped them as OSGi bundles. As stand-alone applications they run as 

expected, but the wrapped OSGi version once deployed into the OSGi framework does not 

run properly. Intuitively, invoking WS from the OSGi should be a straightforward process as 

the OSGi framework is a Java Virtual Machine, the OSGi bundles are Java JAR files, and 

Java tools are used to generate the WS stub code. However, a “bundlefied” Java-based WS 

has run-time issues with the OSGi framework. 

To interact with the WS, the Eclipse IDE Web Service Client wizard is used to generate 

stub code that abstracts the SOAP messages communication. The WS stub code is wrapped 

as an OSGi bundle [107] and deployed into the OSGi framework [40]. The knopflerfish Axis 

bundle is used to provide WS support. However, deploying the wrapped WS resulted in a 

series of errors. We studied the knopflerfish Axis bundle and found that it uses the Apache 

Axis version 1.1 as its SOAP engine, while most recent WS implementations use Apache 

Axis version 1.4. There are significant differences between Apache Axis 1.1 and version 1.4 

such as the naming convention, package names and keywords, in part because Axis 1.1 uses 

Java 1.4 naming convention while Axis 1.4 uses Java 1.5/1.6 [108]. After figuring out these 

problems, it was possible to invoke some WS methods but not others. 

We find out that there are different document styles used by the different versions of 

SOAP [109]. Apache Axis 1.1 only supports Remote Procedure Calls (RPC) and 

RPC/encoded document styles, while Apache Axis version 1.4 supports RPC, RPC/encoded, 

document/literal and document/literal encoded styles. Support for these different styles is 

provided to ensure that the composition framework calls WS using the correct one [110]. An 

appropriate version of the knopflerfish OSGi framework that supports our version of the WS 



118 

 

technologies was found. Several OSGi-wrapped WS using the different document styles were 

tested successfully and support for the WSDL protocol also included. 

Support to the UDDI protocol was added in order to have the complete WS protocol 

stack. This support is needed to query services repositories to find services description and 

binding information. For supporting this protocol, the UDDI4J API [37] was wrapped into 

our service with a simplified interface. After all these steps, the WS_FULL bundle was 

created to provide support to the full WS protocol stack: SOAP, WSDL, and UDDI. To the 

best of our knowledge, this is the first comprehensive solution that supports the entire WS 

protocol stack within OSGi. This bundle also provides a SOAP engine that allows OSGi 

services to be exported as WS. 

5.6.2  SSCL2OSGi Service: 

The actual composition framework is implemented using OSGi technology. The composition 

framework is named SSCL2OSGi as it accepts as input a composite service workflow 

specification file in SSCL and automatically produces an OSGi service that implements it. 

The overall steps of SSCL2OSGi are the following: 

• Step 1: Parses the SSCL file 

• Step 2: Gets candidate services already in the system context 

• Step 3: Gets the remaining candidate services from the service registry  

• Step 4: Translates the SSCL orchestration logic into executable Java code  

• Step 5: Creates the composite service implementation as an OSGi service 

• Step 6: Installs the service into the OSGi framework and starts it 

Now each of these steps is described in detail: 



119 

 

Step 1: Parses the SSCL file. The SSCL2OSGi service takes as input the workflow 

specification of a composite service in SSCL. During this step SSCL2OSGi checks the 

XML-syntax, parses the SSCL file, analyzes its content and creates the parse tree. 

Step 2: Gets candidate services already in the system context. From the parse tree, 

SSCL2OSGi navigates the partnerLinkTypes tag. This tag groups a set of partnerLinkType 

sub tags, each of them containing the interface name of an individual service. Using the 

service interface name, SSCL2OSGi proactively searches for those services already in the 

context using the OSGi BundleContext interface. The composition framework selection 

criteria choose first these services. 

Step 3: Gets the remaining services from the service registry. Those services not found in 

the system context are searched in the service registry. Using the service interface name, this 

registry is queried to find service details such as its description, URL, and service type. As 

the service registry should support different SOAs, a customized version of UDDI was used. 

We customized it by carefully studying UDDI and noticing that it provides a data structure 

called tModels, which are a generic mechanism for describing technical details about WS. 

We used these tModels to describe and register the services, and defined several tModels to 

indicate services details such as their type and remote location. By relying on tModels, the 

customized registry is able to register details of heterogeneous SOAs such as WS and OSGi 

and it can be extended to support others by adding the appropriate tModels entries. 

Step 4: Translates the orchestration logic of SSCL into executable Java code. In SSCL, 

the partnerLink tags describe instantiations of the service indicated in the partnerLinkType 

attribute. These are translated into Java by taking the name attribute as the object identifier 

and the partnerLinkType attribute as the class it instantiates. 

Each variable tag define a unique variable and is translated into Java by taking the name 

attribute as the identifier and the type attribute as the corresponding Java data type. 

The sequence tag indicates the initial method that in Java corresponds to the main 

method. 



120 

 

The invoke tag translates into a Java method call by taking the partnerLink attribute as 

the object, the operation attribute as the method to be invoked, the inputVariable attribute as 

the variable or variables expected as input, and the outputVariable attribute as the variable 

where to store the result returned. 

The assign operation translates into a variable assignment statement in Java by taking the 

from sub tag as the variable or value to be assigned, and the name attribute of the to sub tag 

to indicates the variable where to assign the value. 

The if operation translates into an if decision statement in Java by taking the condition 

sub tag as the Boolean expression to be evaluated, the ACTIONS block as the commands in 

the body of the if, the elseif and else tags as their corresponding Java expressions. 

The while operation translates into a while loop statement by taking the condition sub tag 

as the expression to be evaluated and the ACTIONS block as the commands in the body of 

the loop. 

The forEach operation translates into a for loop statement by taking the counterName 

attribute as the counter variable, the startCounterValue as the initial value for counterName, 

the finalCounterValue as its final value. Finally, the ACTIONS block within the scope sub tag 

is translated as the commands in the body of the loop. 

The repeatUntil statement translates into a do while loop by taking the ACTIONS block 

as the body of the loop and the condition tag as the Boolean expression to be evaluated. 

Step 5: Creates the composite service implementation as an OSGi bundle. After 

translating the orchestration logic into executable Java code, the composition framework 

creates the service interface, the manifest file, the activator class, and the ANT build file 

required for OSGi bundles using the information extracted from the SSCL file. 

Step 6: Installs the bundle into the OSGi framework and starts it. After creating the 

executable Java code and the other required files, Apache ANT is used to compile the files 

and check the dependencies. If all dependencies are resolved and no syntax errors are found, 



121 

 

the composition framework creates a bundle that packages all into a JAR file. The 

composition framework automatically deploys the JAR file into the OSGi framework, and 

starts it. After this point, the new composite service can be used. 

5.6.3  HTTP_JARS Service: 

The OSGi standard requires a simple HTTP service but our composition framework requires 

certain features that are not provided by it. To add the remaining features needed the 

HTTP_JARS service was created. With this service, the OSGi framework serves as a web 

repository where services can be listed, located, and downloaded. This is especially useful 

when registering OSGi services into the service registry as services now running in the 

framework can be accessed and downloaded using a relative path. The HTTP_JARS service 

combined with the WS_FULL and the OSGi default HTTP service provides all the support 

needed for WS operations. 

5.6.4  The OSGi2WS Service: 

As an optional service, the OSGi2WS is provided to allow WS developers to utilize OSGi 

services easily and quickly. The OSGi2WS service is a proxy factory that creates proxy 

services that export OSGi services as WS. The proxy created sits between the client and the 

original OSGi service and provides WS functionalities like WSDL description and SOAP 

messages exchange. Developers will be able to invoke OSGi services as if they were WS. 

The OSGi2WS service extracts the Export-Packages from the manifest file and imports these 

packages into the proxy service. It adds a reference to the original OSGi service into the 

Activator class to export it as a WS. Finally, it packages everything into an OSGi bundle and 

installs it automatically. The OSGi2WS service has a service listener that detects when new 

OSGi services are deployed and prompts the user whether to create a WS proxy. The 

OSGi2WS service can also be invoked directly by indicating the target OSGi service. 

One of the benefits of the OSGi2WS service is that OSGi and WS developers can work 

together as services can be represented in both technologies. OSGi developers can focus on 

creating their services and export them as WS via a proxy. Another benefit is the separation 

of duties, as the proxy bundle is independent and can be stopped or removed while still 



122 

 

conserving the original OSGi service. Creating proxy WS is not without cost as the 

OSGi2WS requires an extra bundle and an additional layer of communication. This can 

potentially degrade performance when compared to direct invocations to the original OSGi 

service. Still the OSGi2WS provides a straightforward way to export OSGi services as WS. 

Our composition framework focuses on using services in their original implementation. 

However, this service is provided as part of our comprehensive approach and to support 

previous solutions that convert OSGi services into WS. 

5.6.5  The WS2OSGi Service: 

Another optional service with a similar motivation as the OSGi2WS service is the WS2OSGi 

service that creates an OSGi proxy of a WS. The WS2OSGi is also a proxy factory but it 

creates OSGi proxy services that communicate with the actual WS. The proxy created sits 

between the client and the WS and provides OSGi functionalities to invoke WS as an OSGi 

service. The OSGi2WS bundle takes as input a WSDL file, generates the stub code, creates 

the necessary OSGi files, packages the stub code and the generated files into an OSGi 

bundle, and automatically deploys it into the OSGi framework. The WS2OSGi service can 

also be invoked directly using as input the WSDL file of the target WS. 

The WS2OSGi bundle offers the benefit of allowing WS and OSGi developers to work 

together making services available in both technologies. WS developers now have a 

mechanism to export their WS as OSGi services. The cost of this approach is perhaps slower 

performance when compared to direct invocations to the WS. Nevertheless, it gives 

developers a tool to simplify and diversify the services development process. The focus of 

our composition framework is to use services in their original implementation but this tool is 

also part of our inclusive approach, especially keeping in mind that most SOA developers use 

WS. 

5.6.6  Guidelines for Supporting Other SOAs: 

The SSCL2OSGi composition framework supports OSGi and WS as an example but can be 

extended to support other SOAs. For adding support of a new SOA, its functionality can be 

wrapped in any supported SOA, as is the case of the WS_FULL service described before that 



123 

 

was wrapped as an OSGi service. It is very important to resolve all packages dependencies, 

solve any versioning issues, include all the required libraries, and import/export all the 

necessary packages. One of the most important file that needs to be checked is the manifest 

file, especially the Import-Packages and Export-Packages entries. All the necessary libraries 

should be included in the classpath entry of the manifest. All these files should then be 

packed into a bundle jar file and installed into the OSGi framework. As the composition 

framework also relies on a customized UDDI registry, the corresponding serviceType tModel 

for specifying services in the new SOA should be created. New services in the new SOA 

must register in the UDDI using the new serviceType and provide the other service details 

using the appropriate tModels. 

5.7  Case Study for MISS 

The feasibility of our composition framework is demonstrated with a case study where the 

workflow of a service is provided in SSCL, the composite service is created, installed, and 

executed. The case study presented is based on the Medicine Information Support System 

(MISS) for Smart Homes [68] that helps patients with the management of their medications. 

MISS integrates the doctor, the pharmacy, and the smart home subsystems allowing 

information to be shared among them. Its main purpose is to increase safety by checking for 

conflicts between new prescription and previous medications, health conditions and food 

items. MISS performs the conflict checking using a trusted third party. By checking new 

prescriptions data with the patient’s local record at each subsystem, MISS detects all possible 

conflicts.  

The overall MISS functionality starts at the doctor’s subsystem where the doctor enters 

the new prescription’s data and checks for conflicts with previous medications and health 

conditions using a trusted third party [111]. If no conflict is found, MISS uses a secure 

communication channel and forwards the prescription data to the pharmacy. At the pharmacy 

subsystem, MISS checks for conflicts using the patient’s local pharmacy record of 

medications and conditions. If no conflict is found, MISS uses a secure communication 

channel and forwards the prescription data to the smart home subsystem. At the smart home, 



124 

 

MISS performs a final check for conflicts this time using the patient’s local smart home 

record of medications, foods, and conditions. Appendix B contains the SSCL file describing 

the workflow of MISS and figure 5.2 shows a diagram for this workflow. This figure shows 

the interactions between the pharmacy subsystem and the smart home subsystem. The 

process execution starts with the Receive Input operation. After that, the RFID Service is 

invoked to read the RFID tag of the medication. This RFID tag uniquely identifies the 

medication and it is used when the Pharmacy Service is invoked to query the prescription 

details. The Assign block assigns the values received from the Pharmacy Service into a set of 

local variables and pulls the local patient’s record. The new prescription data and the local 

patient’s record are used to invoke the MCD Service [111]. This service checks for conflicts 

among the new prescription with previous medications, health conditions, and food items at 

home. Depending whether there is a conflict, the Speech Service and Notification Service are 

invoked with the corresponding message. The Speech Service gives a spoken notification to 

the users in the home, while the Notification Service sends email, text messages or makes 

phone calls to the appropriate parties. Finally, if no conflicts are found the new prescription 

data is stored into the Smart Home subsystem when the Medicine SH Server service is 

invoked. 

 



125 

 

 

 

Figure 21 - Graphical representation of the workflow of the MISS Service using SSCL. 

 
5.8  Evaluation 

To determine the effectiveness of our composition framework the composition time overhead 

and the execution time of the created composite service are measured. A summary of the 

results is presented next. 

5.8.1  Composition Time Overhead 

We study the overhead added and the performance cost of the activities of our automatic 

composition framework. The major activities of the composition framework are Parsing, 

Model Check, CodeGen, and Create Bundle. Parsing measures the time it takes to read the 



126 

 

SSCL file and create a parse tree. Model Check measures the time it takes to check for syntax 

errors and standard logical errors. CodeGen measures the time it takes to translate the SSCL 

code into Java code and create the other necessary files. Create Bundle compiles, installs and 

starts the new composite service implementation. The time to create the composite service 

for the MISS workflow is measured. In the experiments, we create the composite service and 

measure the creation time at least 100 times. Figure 5.3 presents the average time taken by 

each major activity measured in miliseconds. It shows the overhead the composition 

framework adds for this particular example, and gives insight on how the framework might 

behave in general. This analysis helps to identify the activities that need improvement in 

order to reduce the execution time and improve performance. 

 

 

Figure 22 - Time of the composition activities for MISS. 

As seen in Figure 5.3, the parsing process is the most expensive activity in terms of 

execution time. The parsing process is studied closer and the results are shown in Figure 5.4. 

The parsing process activities are Get Sequence, UDDI, Get PLT, File Download, WS Stub, 

and Service Impl. Get Sequence extracts the orchestration logic of a SSCL file. UDDI 

3155 2998 1043 999

0 2000 4000 6000 8000 10000
Time (ms.)

C
o

m
p

o
si

ti
o

n
 A

ct
iv

it
y

Times of Composition Activities for the MISS 

Service

Parsing

Model Check

CodeGen

Create Svc



127 

 

measures the average time of a roundtrip query message to the UDDI registry. GetPLT 

measures the time to get the ParnerLinkTypes and bind to the actual services. File Download 

measures the average time to download the JAR file of an OSGi bundle. WS Stub measures 

the average time to get the WSDL file and generate the stub code when using WS. Service 

Impl measures the average time for generating the Java class that implements the 

orchestration logic. Figure 5.4 shows that generating stub code takes 500 milisecond, while 

downloading the jar takes much less. Response time of OSGi services is also much quicker 

than WS. Even when creating services using the composition framework adds some 

overhead, this is a one-time operation. There is a tradeoff between the advantages of using 

the automatic composition framework and the overhead added that must be considered. The 

next subsection presents an analysis on how the performance of the resulting composite 

service compares to the traditional composition methods for that use a single SOA. 

 

Figure 23 - Parse time of the SSCL file implementing the MISS Service. 

5.8.2  Execution time 

The execution times of composite services using current composition techniques are 

compared with the heterogeneous SOAs composite services automatically generated by our 

composition framework. In the experiments, we create a composite service that only uses 

OSGi services (MISS_OSGI), a composite service that only uses WS (MISS_WS), and the 

168 64 2,515 12 500 21

0 500 1000 1500 2000 2500 3000 3500

Time (sec.)

P
a

rs
e

 S
te

p
s

MISS Parse Time 

Get Sequence UDDI Get PLT File Download WS Stub Service Impl



128 

 

third composite service that is automatically generated by the SSCL2OSGi composition 

framework that combines OSGi and WS (MISS_COMB). Our hypothesis is that MISS_OSGi 

will perform better, followed by MISS_COMB and MISS_WS will have the worst 

performance. We base our hypothesis in the fact that OSGi services are local and their 

communication protocol is faster, while WS use HTTP that is a slower protocol. Figure 5.5 

shows the average time and the standard deviation results of the experiments after executing 

the three types of composite services at least 100 times, while Figure 5.6 shows the minimum 

and maximum values. 

 

Figure 24 - Execution time of each implementation where the dark line indicates the 

standard deviation. 

0

500

1000

1500

2000

2500

3000

MISS_OSGI MISS_COMB MISS_WS

E
xe

cu
ti

o
n

 T
im

e 
(m

s.
)

Implementation

Execution Time of Different SOA Compositions with 
Standard Deviation

Std. dev



129 

 

 

Figure 25 - Execution time of each implementation where the dark line indicates the 

minimum and maximum. 

These results support our hypothesis as the MISS_OSGi has the best performance, 

followed by MISS_COMB and the composition with the worst execution time is MISS_WS. 

Nevertheless, the time difference among them is less than 400 milisecond. This amount of 

time for this particular application is acceptable and when observed by a human being it is 

almost unnoticeable. The fact that WS are the slower but the most popular and widely used 

SOA, gives us an upper bound on the time that is acceptable for these applications. Another 

positive result observed is a reduction in the execution time of the worst case when 

heterogeneous services are used. It is an advantage that different implementations of services 

providing the same functionality can be chosen. Figure 5.5 shows that the MISS_COMB has 

0

500

1000

1500

2000

2500

3000

3500

MISS_OSGI MISS_COMB MISS_WS

E
xe

cu
ti

o
n

 T
im

e 
(m

s.
)

Implementation

Execution Time of Different SOA Compositions with 
Min/Max

Min/Max



130 

 

the smallest standard deviation and Figure 5.6 shows it has the smallest range, having the 

execution time with less variability. 

5.9  Conclusions and future work 

A Service-Oriented Architecture approach has been widely used in pervasive spaces such as 

smart homes. Nevertheless, we would like to enhance the process of composing services of 

heterogeneous SOAs. In this chapter, a framework is presented that supports automatic 

composition of heterogeneous SOAs services while requiring minimum intervention from the 

user. This framework provides for on-the-fly compositions, a searchable service directory, 

and support different SOAs with OSGi and WS as an example. 

A case study is offered in which the performance of the composite service created by the 

framework is compared with composite services created using current techniques. The 

analysis of the results shows that the performance of our composition framework is 

acceptable and the resulting composite service show less variability than current composition 

techniques. The resulting service also performs close to the best-case scenario. 

For future work, we would like to extend our composition framework by adding support 

for other SOAs, to compose a greater variety of services. We would also like to look at other 

measures to improve the composition framework performance and to automate the process of 

updating services. A study on how to incorporate formal methods that automatically check 

safety properties for the composite services is on going. 

 

  



131 

 

CHAPTER 6.  A COMBINED MODEL CHECKING APPROACHFOR 
SAFETY OF COMPOSITE SERVICES 

 
 

 
6.1  Abstract 

Pervasive environments such as the smart home often rely on composite services to provide 

different functionalities. As the complexity of composite services increases, it becomes more 

important checking the safety of the interactions among different services and the workflow 

of the composites. Safety checking of composite services and their interactions is beneficial 

as some services might manage sensitive data or perform critical operations. In this chapter, 

we study the characteristics of services and categorize them as baseline or extended. A 

mechanism that relies on model checking techniques to ensure that services of both 

categories meet our adopted safety criteria is proposed. This mechanism is implemented as a 

fundamental part of an automatic composition framework to ensure that only composite 

services that meet the safety criteria are created. An example of a smart home composite 

service for medications management is provided to demonstrate our approach. 

6.2  Introduction and Motivation 

A smart home is a house that integrates different technologies to assist the elderly and 

persons with special needs to stay home longer and live more independently [1]. Smart 

homes can help the residents with their activities of daily living by monitoring and assessing 

conditions of the inhabitants. Services like those found in a smart home might perform 

critical operations or might manage sensitive data. This imposes several requirements, 

conditions, and properties over the services that define the safety criteria. Checking the safety 

of services implies checking compliance with the set of safety criteria. Therefore, a 

mechanism to guarantee that services satisfy the safety criteria as well as compliance with 

applicable laws is needed. 

We provide a mechanism to ensure the safety of services such as those used in a smart 

home environment. To ensure the safety of the services our mechanism relies on the use 

formal software analysis. M.B. Dwyer et. al. [13] define formal software analysis as a 



132 

 

mathematically well-founded automated technique to reason about the behavior of a software 

system with respect to a specification of sound and unsound behavior. Model checking is one 

type of formal software analysis that has gained popularity as software becomes more 

complex and intractable. In our work, model checking techniques are integrated to verify 

whether composite services and their interactions satisfy the adopted safety criteria. 

In the literature, different composition frameworks that use model checking techniques 

especially targeted for web services (WS) are found [112]. We compare their strategies with 

our solution. Several frameworks for automatic composition of WS select services based on 

particular requirements or QoS measures such as performance, response time, or reliability 

[3]. Another set of frameworks focus on formally modeling the individual services, use 

models of the services to create the composite service, and checking properties of the 

resulting models [113],[112]. Some of these frameworks embed the checking tasks within the 

composition process [114]. Our solution follows a similar strategy by modeling the selected 

services and their interactions, and checking safety properties on the model. However, in our 

solution, the interactions checked are among candidate services that belong to heterogeneous 

SOAs, and model checking of extended services is integrated as part of a composition 

framework and performed automatically. Research works on automatic composition 

frameworks of services based on heterogeneous architectures, either formally check the 

individual services or the resulting composite services [51]. In our work, we provide a safety 

checking solution that supports modeling and checking baseline and extended composite 

services of heterogeneous SOAs and their interactions. Our work describes the theoretical 

foundation of the model checking approach used, presents an actual implementation of the 

mechanism adopted, and incorporates it as part of our heterogeneous SOAs composition 

framework. 

The service composition framework is extensible and allows automatic seamless 

composition of services of heterogeneous SOAs [115]. The goal of the composition 

framework is to have a mechanism that a user with little technical expertise can use to 

develop applications to control the devices and appliances in environments such as the smart 

home. In this chapter an enhancement to this composition framework is provided by adding 



133 

 

support for model checking, which will allow checking the safety criteria of individual 

services, composite services, and the safety of interactions among these. The safety criteria 

include the standard criteria and the custom criteria. The standard criteria are those properties 

that all services must comply. The custom criteria are custom properties that a particular 

composite service must comply. Services are divided based on their properties in two sets: 

baseline services and extended services. Baseline services are those that are assumed part of 

the initial configuration and may have custom safety criteria to be checked. Extended 

services are those that can be added, removed, started, or stopped at any time. We contribute 

with a detailed semi-automatic modeling and checking approach for baseline services. The 

extended services are dynamic and the details on how they operate may not be known a 

priori. To model and check those services we contribute with an automatic approach. 

Different strategies are used for modeling and checking services in different categories. For 

baseline services they are modeled in PROMELA, their custom properties are modeled using 

Linear Temporal Logic (LTL) and checked for compliance using the SPIN model checker as 

an example. Extended services are checked for safe interactions and compliance with safety 

properties such as controllability, absence of deadlocks, and absence of false nodes. We 

claim that the Simple Service Composition Language (SSCL), used to specify composite 

services workflow, is compatible with the Business Process Execution Language for Web 

Services (WS-BPEL), a widely used orchestration language. Composite services are formally 

modeled using open Workflow Net (oWFN) [116] [117] and checked using the Fiona model 

checker. 

Furthermore, we use as an example to demonstrate the effectiveness of our solution a 

smart home composite service for the management of medications [68]. This is an 

appropriate example as it handles patient’s personal and sensitive healthcare data including 

prescription details, health conditions, and other medicines the patient might be taking. 

Special care must be must taken to ensure safety and compliance with applicable laws such 

as the Health Insurance Portability and Accountability Act (HIPAA) in the United States 

[86]. M.J. May et. al in [63] describes a representation of the law using formal language. This 

kind of formalization of the law is necessary as sometimes the language of the law can be 



134 

 

ambiguous or subject to interpretation of an expert such as an attorney or a physician. Such 

ambiguity makes it very difficult for computer systems to check whether a system complies 

with the law. We study several statements of the HIPAA law, formalize them, model them, 

and use them as our custom safety criteria. 

6.3  Background 

Several model checking approaches are used in this work for modeling and checking 

composite services and their interactions. Two model checkers, SPIN and Fiona are used. 

SPIN is a widely used model checker that interprets the model of a system specified in the 

Process Meta Language (PROMELA) and checks if the model satisfies properties that are 

specified using Linear Temporal Logic (LTL). The reader can refer to [84],[118] for more 

details on the SPIN model checker. The other model checker used is Fiona that is designed to 

interpret open Workflow Nets (oWFN) [119]. The motivation to use oWFN is that these 

structures are specially designed to model inter-organizational workflows and service-

oriented architectures. They offer an efficient modeling structure as they reduce the number 

of states during analysis when compared to other structures such as canonical Petri Nets. 

Tools are available that generate oWFN from workflow specification files [120], [62]. Fiona 

takes as input an oWFN and checks a standard set of properties such as controllability, 

absence of cycles, and absence of false nodes. This section presents background details on 

the theory of oWFN by first showing the definition of a Petri Net, followed by the definition 

of the oWFN and then a definition of a controller that is an automaton used to determine 

controllability. 

Definition 1. A Petri net N consists of: 

• A set P of places, usually represented as a circle 

• A set T of transitions, usually represented as a rectangle 

• A flow relation F, where F  (T x P) ! (P x T), represented by edges 

• A marking m that is a multiset �: ' ( )  (where m[p] , represents the number of 

tokens in place p). A token is usually represented by a dot. 



135 

 

• A marking m enables a transition t if for each place p with (p, t) � F, m[p] ≥ 1. If 

enabled at m, firing t yields the marking m’ with m’[p] = m[p] − 1  if (p, t) � F and (t, 

p) ∉ F, m’[p] = m[p] + 1 i f (t, p) � F and (p, t) ∉ F, and m’[p] = m[p]  otherwise. 

Figure 6.1 shows a graphical representation of a Petri Net. This figure illustrates the 

different markings and the firing process. 

 

 
 

Figure 26 - Graphical representation of a Petri Net and its firing. 

 

Definition 2. A Petri net N is an open Workflow Net (oWFN) M if: 

• P is the disjoint union of the sets Pm, Pi and Po, where Pm is the set of internal places 

as defined Definition 1 for Petri Nets, Pi is the set of input places with no incoming 

edges, and Po is the set the output places with no outgoing edges.  

• F ∩ (Po × T) =   

• F ∩ (T × Pi ) =   



 

• F does not contain cycles (the transitive closure of 

• M has a distinguished initial marking m

• M has a set Ω of distinguished final markings

Figure 6.2 shows a graphical representation of an oWFN. Initial marking only have 

outgoing edges. Input places and transitions from input places are colored orange. Outpu

places and transitions to output places are colored yellow. Final markings have only 

incoming edges and are colored gray.

Figure 27 - Graphical representation of an oWFN

 

Definition 3. Let M be an oWFN and 

connected to I containing the following items:

• Alphabet bags(I) 

136 

does not contain cycles (the transitive closure of F is irreflexive) 

has a distinguished initial marking m0 

of distinguished final markings 

2 shows a graphical representation of an oWFN. Initial marking only have 

outgoing edges. Input places and transitions from input places are colored orange. Outpu

places and transitions to output places are colored yellow. Final markings have only 

incoming edges and are colored gray. 

 

Graphical representation of an oWFN 

be an oWFN and I � (PI ! PO). A controller 

containing the following items: 

2 shows a graphical representation of an oWFN. Initial marking only have 

outgoing edges. Input places and transitions from input places are colored orange. Output 

places and transitions to output places are colored yellow. Final markings have only 

 is an automaton 



137 

 

• A set of states Q 

• A move relation δ : Q × bags(I) −> ρ(Q) 

• And an initial state q0 

Some of the safety properties that can be modeled and verified with oWFN are weak 

soundness, soundness, usability, controllability, absence of cycles and absence of false nodes. 

Weak soundness determines the possibility to reach an end state from each state reachable 

from the initial state. Soundness means in addition to weak soundness that there are also no 

dead transitions on the net, where dead transitions are those that cannot fire. Usability 

indicates that there exists an environment such that the oWFN of a service composed with 

the oWFN of the environment yields a weakly sound net. Controllability occurs when given 

a partner service for an oWFN, a controller for the composition can be constructed and 

soundness holds. Absence of cycles means that given a partner for and oWFN the 

composition does not create any cycle. Absence of false nodes checks that given a partner for 

and oWFN, the input places matches the annotations of the corresponding output places. For 

our work, we are particularly interested in checking for controllability, absence of cycles, and 

absence of false nodes as our safety criteria. 

There are several techniques for checking controllability such as computing a public view 

(PV), an interaction graph (IG) or an operating guideline (OG) [117]. A PV is an abstract 

representation of the operations and communication behavior of a service that describes the 

publicly available service interface. An IG is a structure that represents the controller point of 

view of a node, where each node contains all possible states that are reachable at certain 

point. An IG can be seen as a hypothesis for the controller, representing feasible runs of a 

partner service. An OG is a structure that represents the behaviors of all possible strategies 

for sound executions. It describes how a partner service should behave instead of describing 

the actual service behavior. Computationally speaking, out of the three methods, constructing 

the PV is the least costly, but the controllability checks are more expensive as PV greatly 

suffers the state explosion problem. Another issue with PV is that it reveals too much 

information about the service operation. The IG is relatively easy to compute and to verify, 



138 

 

but it also reveals too much information about the possible states of the service. The OG is 

the hardest to compute but it is easy to verify. OG offers the advantage that it does not reveal 

information about the service itself as it describes how a partner should behave instead. 

Researchers generally prefers OG because, even though computing it is computationally 

more expensive, this is a onetime cost justifiable by the efficient verification and the fact that 

OG does not reveal information about the service but about a partner [121]. 

6.4  Model Checking Composite Services 

Our main goal is to provide a mechanism to check the safety of composite services and their 

interactions, using as an example services encountered in smart home environments. The set 

of common services studied are classified as:  

• Baseline services: Consists of those services that are assumed to be part of the initial 

configuration and may have custom safety criteria to be checked. (e.g. Notifications 

service and appliances control service) 

• Extended services: Consist of services that can be added, removed, started, or stopped 

at any time. (e.g. monitor a special medical treatment for a month) 

Although there are many approaches for formally checking services and applications, 

these solutions usually check services individually [13]. In our work, different approaches are 

combined to ensure that the services running in the system comply with our specific safety 

criteria. For baseline services, a semi-automatic approach that models services using 

PROMELA, specifies its custom safety criteria using LTL, and checks the standard and the 

custom safety criteria using the SPIN model checker is showed. For extended services in a 

dynamic environment, automatically checking the safety of these services interactions 

presents a challenge. The extended composite services are modeled as oWFN and the 

standard safety criteria are checked using Fiona model checker. We provide an example of 

our approach applicable to smart home environments. The example used is based on the 

Medicine Information Support System (MISS) [68],[111] that is a medication management 



 

service. MISS is composed of several services

interactions and the safety criteria

Figure 6.3 presents the architecture on how 

At the top, the requirements 

service. Based on these requirements the composite service is designed. Based on the 

a model of the composite service can be created using PROMELA. Based on the safety 

requirements, the custom 

PROMELA model and the LTL model, 

model complies with the safety 

the design for revision of the model. If the model satisf

implementation stage and finally the service is installed into the 

Home OSGi Framework. 

Figure 28 - Model Checking Architecture for 

139 

is composed of several services, which are modeled together with their 

the safety criteria. 

3 presents the architecture on how baseline services are model

requirements box, indicates all the requirements for a particular composite 

service. Based on these requirements the composite service is designed. Based on the 

a model of the composite service can be created using PROMELA. Based on the safety 

requirements, the custom safety criteria can be modeled using LTL.

PROMELA model and the LTL model, the SPIN model checker is used to verify 

model complies with the safety criteria specified. If the model do not satisfies it

the model. If the model satisfies the safety criteria

stage and finally the service is installed into the system, such as the 

Model Checking Architecture for Baseline and Extended Services

, which are modeled together with their 

modeled and checked. 

tes all the requirements for a particular composite 

service. Based on these requirements the composite service is designed. Based on the design, 

a model of the composite service can be created using PROMELA. Based on the safety 

can be modeled using LTL. Providing the 

to verify whether the 

criteria specified. If the model do not satisfies it, goes back to 

criteria, it passes to the 

system, such as the Smart 

 

Services 



 

Figure 6.4 presents the architecture on how 

At the top, the requirements 

service. Based on these requirements the composite 

are specified using SSCL. The SSCL file is then modeled as an 

oWFN is then passed to the 

cycles, and false nodes of the composite 

returned for corrections to the workflow

proceeds to generate automatically the implementation 

service implementation is deployed 

Framework. 

Figure 294 - Model Checking Architecture for 

 

140 

presents the architecture on how extended services are model

requirements box, indicates the requirements for a particular composite 

these requirements the composite service workflow and their interactions 

. The SSCL file is then modeled as an oWFN automatically

to the Fiona model checker that will check controllability, 

the composite service. When an error is found, an error message is 

ions to the workflow. If no errors are found, the composition framework 

generate automatically the implementation of the service. Finally, the 

implementation is deployed into the environment, such as the Smart Home OSGi

 

Model Checking Architecture for Extended Services 

modeled and checked. 

box, indicates the requirements for a particular composite 

and their interactions 

automatically. This 

model checker that will check controllability, absence of 

is found, an error message is 

composition framework 

. Finally, the composite 

Smart Home OSGi 

 



141 

 

6.5  Modeling and Checking Approach for Baseline Services 

Baseline services are fundamental services in a smart home that form part of its core 

infrastructure and are expected to operate continuously. As these services are essential for the 

proper functioning of the smart home, special care should be taken in checking their proper 

functionality and compliance with safety requirements and applicable laws. We assume that 

the set of baseline services are defined at design time, which gives us a clear idea how they 

operate. We also assume that these services have a set of custom safety criteria they have to 

comply with. We show how to integrate safety checking into our composition framework by 

using the PROMELA language to model baseline services and Linear Temporal Logic (LTL) 

to model the custom safety criteria. For verifying compliance of services with the safety 

custom criteria the SPIN model checker is used [67]. In the next sections, more details on an 

example how to model of a system and the custom safety properties to check are provided. 

6.5.1  Example of Services Modeled Using PROMELA 

Our approach to model baseline services is shown using as an example the Medicine 

Information Support System (MISS), which integrates the doctor, the pharmacy, and the 

smart home to help the patient manage medications [111]. MISS ensures safety by checking 

possible drug interactions among medications, foods, and health conditions. The doctor, 

pharmacy, and smart home entities of MISS are modeled using PROMELA. Also the 

medicine conflict database (MCD) and a client record request are modeled. The custom 

safety criteria to check are based on the Health Insurance Portability and Accountability Act 

(HIPAA) in the United States [86]. A set of applicable HIPAA statements are modeled using 

LTL. In the models, covered entities that can be the patient, the government, or another entity 

that handles health records are included. The actual checking of whether MISS complies with 

the HIPAA law is performed using the SPIN model checker. The description on how each 

subsystem is modeled is next. 

For the case of the doctor service there are two possible scenarios categorized as a regular 

flow and an alternate flow. The regular flow models a regular doctor visit where the doctor 

checks a patient and prescribes some medication. The alternative flow models when another 



142 

 

party such as a healthcare provider requests a patient record. A high level description of the 

doctor’s service model is the following:  

Doctor’s Service: 

Regular Flow: 

• Assigns values to the variables of the following records: 

o Covered-entity 

o Local patient record 

• Receives a patient 

• Creates a prescription for the patient 

• Checks for conflicts using a channel to communicate with the MCD process 

• Forwards the prescription to the pharmacy service using a channel 

Alternative Flow: 

• Receives a request for a patient’s record 

• Serves the request for a patient’s record depending on the requestor 

 

The pharmacy service is modeled similarly by determining a regular flow and an 

alternate flow. The regular flow models when a pharmacist receives a prescription from the 

doctor, prepares it, and serves it. The alternative flow models when another party requests a 

patient record. The high-level view of the pharmacy’s model is the following: 

 

 



143 

 

Pharmacy Service: 

Regular Flow:  

• Assigns values to the variables of the following records: 

o Covered-entity  

o Local patient record 

• Receives the prescription data over a channel 

• Checks for conflicts using a channel to communicate with the MCD process 

• Forwards the prescription to the smart home using a channel 

Alternative Flow: 

• Receives a request for a patient’s record 

• Serves the request for a patient’s record depending on the requestor 

 

The smart home service is also modeled with a regular flow and an alternate flow. The 

regular flow models when the smart home receives a prescription from the pharmacy, checks 

for conflicts with medications and foods at home, and checks for timeliness and 

completeness as described in [111]. The alternative flow models when another party requests 

a patient’s record. The high-level view of our smart homes model is the following: 

Smart home Service: 

Regular Flow: 

• Assigns values to the variables of the following records: 

o Covered-entity  



144 

 

o Local patient record 

• Receives the prescription over a channel 

• Checks for conflicts using a channel to communicate with the MCD process 

• Determines completeness and timeliness 

Alternative Flow: 

• Receives a request for a patient’s record 

• Serves the request for a patient’s record depending on the requestor 

 

The doctor, pharmacy, and smart home services check for different conflicts among 

medications, foods and medical conditions using the medicine conflict database (MCD) 

modeled as follows: 

MCD Service:  

• Receives the new prescription 

• Receives the patient record 

• Determines if there is a conflict based on the prescription and patient record 

 

A person may request a patient’s record from the doctor, the pharmacy, or the smart 

home. This client can be the patient, the government, or any other covered entity [86]. Client 

request are modeled as follows: 

Client Request: 

• Determines the category of the requestor: patient, government or covered entity 

• Request a patient’s record to one of the subsystem: doctor, pharmacy or smart home 



145 

 

• Returns the corresponding patient’s record 

 

With the doctor, pharmacy, smart home, MCD, and client request models, the overall 

functionality of MISS is captured. The model of the system in PROMELA can be found in 

APPENDIX C. The details on how to model the safety criteria to check on these models is 

provided next. 

6.5.2  Safety Criteria in Compliance with the HIPAA Law 

As smart homes aim to assist persons with their activities of daily living including healthcare, 

it is important checking how a system like MISS manages the sensitive data of healthcare 

records. We provide an example that checks whether the MISS model complies with custom 

safety criteria based on healthcare law. The law modeled is the HIPAA law, which is 

collection of requirements for the management of healthcare data that covers healthcare 

related entities. The law is modeled using a mapping of the legal language into formal 

language understandable by a computer system [63]. The statements of the law modeled are 

those that we believe directly apply to smart homes and to our MISS example. The 

interpretation of these statements of the law and their model in linear temporal logic (LTL) 

formulas are provided. These LTL formulas are used as our custom safety criteria. The text 

of the HIPAA law can be found in [86].  

Statement 1 

Interpretation: If a covered entity requests a patient’s record, it will never receive an 

empty record. 

LTL Formula: 

#define p1 (requestor == 2)  

#define q1 (patientData == true || restrictedData == true)  

[] ((p 1) -> (<> (q 1))) 



146 

 

Explanation: The requestor variable indicates the person or entity requesting the data 

and the value 2 represents a covered entity. The patientData and restrictedData variables 

represent the two components of a patient’s record. 

Statement 2 

Interpretation: If the MCD finds a conflict, it is never the case that the calling process 

reaches the end. 

LTL Formula: 

#define p2 (response == true) 

#define q2 (doctorFinished == true || pharmacyFinished == true || shFinished == true) 

[] ((p 2) -> (<> (!q 2))) 

Explanation: The response variable indicates the result of the conflict checking returned 

by MCD. The doctorFinished, pharmacyFinished, and shFinished variables indicate 

whether a service finishes its execution. 

Statement 3 

Interpretation: If the requestor is the government it is always the case that the full 

record will eventually be disclosed 

LTL Formula: 

#define p3 (requestor == 3) 

#define q (patientData == true && restrictedData == true) 

[] ((p 3) -> (<> (q 3))) 

Explanation: The requestor variable indicates the person or entity requesting the data 

with the value 3 representing the government. The patientData and restrictedData 

variables represent the two components of a patient’s record. 



147 

 

Statement 4 

Interpretation: If timeliness, completeness becomes false or response becomes true, 

then eventually the system gives a notification. 

LTL Formula: 

#define p4 (timeliness == true || completeness == true || response == true) 

#define q4 (notification) 

[] ((p 4) -> (<> (q 4))) 

Explanation: The timeliness variable indicates if the medicine is taken at the correct 

time. The completeness variable indicates if the dosage of medicine taken is correct. The 

response variable indicates if there is a conflict. The notification variable indicates if a 

notification is given. 

Statement 5 

Interpretation: When patients request their medical record, only the patient’s data is 

disclosed but never the restricted data. 

LTL Formula: 

#define p5 (requestor == 1) 

#define q5 (patientData == true && restrictedData == false) 

[] ((p 5) -> (<> (q 5))) 

Explanation: The requestor variable indicates the person or entity requesting the data 

with the value 1 representing the patient. The patientData and restrictedData variables 

represent the two components of a patient’s record. 

 



148 

 

Statement 6 

Interpretation: The doctor has to satisfy all the law requirements for covered entities 

over time. 

LTL Formula: 

#define p6 (doctorCE.patientReqs == true && doctorCE.adminReqs == true) 

<>[] (p 6) 

Explanation: The doctorCE.patientReqs indicates if the doctor is fulfilling the 

requirements for patients. The doctorCE.adminReqs indicates if the doctor is fulfilling 

the administrative requirements. 

Statement 7 

Interpretation: The pharmacy has to comply with the patient and administrative 

requirements over time. 

LTL Formula: 

#define p7 (pharmacyCE.patientReqs == true && pharmacyCE.adminReqs == true) 

<>  [] (p 7) 

Explanation: The pharmacyCE.patientReqs indicates if the pharmacy is fulfilling the 

requirements for patients. The pharmacyCE.adminReqs indicates if the pharmacy is 

fulfilling the administrative requirements. 

Statement 8 

Interpretation: The smart home has to fulfill the patient and administrative requirements 

of HIPAA over time. 

 



149 

 

LTL Formula: 

#define p8 (shCE.patientReqs == true && shCE.adminReqs == true) 

<>  [] (p 8) 

Explanation: The shCE.patientReqs indicates if the smart home is fulfilling the patient 

requirements. The shCE.adminReqs indicates if the smart home is fulfilling the 

administrative requirements. 

The PROMELA model of MISS and the LTL model of the HIPPA law show a particular 

example on how to model baseline services and their safety criteria. However, any 

appropriate model checking tools can be used for this purpose. 

6.6  Modeling and Checking Approach for Extended Services 

In environments such as the smart home, it is desired for services to comply with a standard 

set of safety criteria. Extended services automatically created by the composition framework 

should also comply with this criteria and be formally checked. In this section, we show how 

the composite service workflow specified in SSCL is converted into an oWFN. Several 

syntactic and semantic properties of the workflow specification are defined and proved. It is 

also shown how the model checker is integrated into the composition framework and how 

these checks are automated. 

6.6.1  The SSCL2OSGi Composition Framework Description 

The SSCL2OSGi composition framework supports automatic composition of services of 

heterogeneous SOAs [115]. This chapter enhances the framework by adding formal modeling 

and checking of services and their interactions. The SSCL2OSGi composition framework 

accepts as input a composite service workflow description specified using the Simple Service 

Composition Language (SSCL). The composition framework parses and analyzes the SSCL 

file for creating a composite service that relies on services of heterogeneous SOAs. The 

description and binding information of each service are stored in a repository that supports 

registering heterogeneous SOA services. The composition framework produces the 

implementation of the workflow as an OSGi service. The SSCL2OSGi framework is 



150 

 

developed using OSGi technology and currently supports WS and OSGi services. The safety 

of the composite service and their interactions as specified in the SSCL file are verified 

before creating the composite service implementation. 

6.6.2  Converting SSCL to oWFN 

This section explains the approach to model a service workflow specified in SSCL using 

open Work Flow Nets (oWFN). Several works have tackled similar problems and produced 

tools such as those for converting the Business Process Execution Language for Web 

Services (WS-BPEL) into Petri Nets [122],[123]. Other works present tools for converting 

WS-BPEL into an oWFN [120],[61]. In this work, a similar approach is used of converting a 

SSCL workflow file into an oWFN by reducing it into WS-BPEL. This will allow using 

those tools already available for verifying oWFN. 

We provide a set of definitions and prove a set of claims to show how to convert a SSCL 

files into an oWFN. The SSCL is a language inspired by WS-BPEL. The SSCL language is 

used as it provides a SOA-independent language to specify composites. WS-BPEL is a WS 

language and its syntax is targeted to that specific architecture, while SSCL does not target 

any specific one. SSCL is designed based WS-BPEL syntax and the conversion algorithm 

used by N. Lohmann [120] to convert WS-BPEL files into oWFN. We claim that SSCL is 

semantically compatible with WS-BPEL. We also claim that the SSCL design allows it to be 

converted into oWFN. Finally, we show that an oWFN produced from a SSCL file and an 

oWFN produced from a compatible WS-BPEL file are the same. Now, we provide a series of 

definitions that will be used to prove our claims: 

Definition 4. Formal Syntax of SSCL 

Please refer to Appendix A ⎕ 

Definition 5. Semantic tags 

A semantic tag ts is a tag or attribute that carries semantic meaning and is used by the 

conversion algorithm. (e.g. if and invoke) ⎕ 



151 

 

Definition 6. Syntactic tags 

A syntactic tag ti is a tag or attribute that carries only syntax but does not have semantic 

meaning. These tags are optional and ignored by the conversion algorithm. (e.g. name 

and role) ⎕ 

Definition 7. Compatibility of a SSCL and a WS-BPEL command 

An SSCL command cs is compatible with a WS-BPEL command cb if the semantic tags 

of cs have the same semantic meaning as the semantic tags of cb but their syntactic tags 

may differ. We denote compatibility of commands as cs ~ cb ⎕ 

Definition 8. Compatibility of SSCL and BPEL processes 

A process s described in SSCL is compatible with a process b described in WS-BPEL if 

all their commands are compatible and they appear in the same order. We denote 

compatibility of processes as s~ b ⎕ 

Claim 1. The if command in SSCL ifs is compatible with the if command in WS-BPEL ifb 

and both commands map into the same oWFN structure.  

Proof. We first show that ifs is compatible with ifb. Both commands evaluate a Boolean 

condition and based on the result of the evaluation a branch is executed. Both commands 

support elseif and else. Both commands have the same set of semantic tags, therefore ifs ~ 

ifb. 

The differences between ifs and ifb are a set of syntactic tags. The conversion algorithm 

ignores these syntactic tags, therefore both commands will map into the same oWFN 

structure ⎕ 

We can use a similar argument as in Claim 1 for showing the compatibility of the 

commands assign, repeatUntil, forEach, while, and invoke. The rest of the tags and attributes 

supported by SSCL are not used by the algorithm that creates oWFN structures. They are 



152 

 

syntactic tags that lack semantic meaning. Now we proceed to prove the claims about the 

produced oWFNs. 

Claim 2. An SSCL process ps produces the same oWFN as its compatible WS-BPEL process 

pb.  

Proof. Given ps, its compatible process pb have the same semantic tags in the same order 

according to Definition 8. 

Claim 1 shows that the if commands will map into the same oWFN structure 

Using the same strategy of Claim 1 will show the compatibility of the commands assign, 

repeatUntil, forEach, while, and invoke. 

Therefore, the oWFN produced for a ps process is the same as for its compatible pb ⎕ 

After proving the claim that the oWFN generated from a SSCL files is the same as the 

one generated from a compatible WS-BPEL processes, now the tools for analyzing and 

checking properties of oWFN can be used [124]. APPENDIX D has the oWFN model of the 

MISS system and figure 6.5 shows a graph of the simplified oWFN, which is the same 

oWFN we obtain from the compatible WS-BPEL file. The next section contains details on 

how to check safety criteria on this oWFN using the Fiona model checker. 



153 

 

 

Figure 305 - Structurally reduced oWFN generated from the SSCL process 

 
 
6.6.3  Model Checking oWFN Using Fiona 

Fiona [62] is a model checking tool that analyzes the safety of interactions among services 

modeled as oWFN [61]. Fiona can determine matching services, verify partner synthesis and 

perform a check for controllability, which is a minimal correctness criterion stating the 

existence of a behavioral compatible partner for the service. Fiona also provides the tools to 

create an adapter rule that serves as a mediator between different oWFN, mapping items 

from one oWFN into items in another. It can also check for absence of cycles and absence of 

false nodes. Fiona can produce the public view (PV), interaction graph (IG), and operating 

guideline (OG) of composite services automatically.  

For the purpose of our work, Fiona model checker is used for automatically checking the 

oWFN models generated from the SSCL files. Compliance with a standard set of safety 



154 

 

requirements are checked by integrating Fiona with the SSCL2OSGi composition framework 

and making model checking a necessary step before creating the composite service 

implementation. Different composite services were tested to ensure satisfaction of our safety 

criteria that consist of checking for controllability, absence of cycles, and absence of false 

nodes. The results obtained by checking MISS controllability using PV, IG, and OG are 

presented next. 

6.6.4  Computing Public View (PV):  

A PV is an abstract version of a service and its communication behavior that describes the 

publicly available service interface and the different possible ways to interact with it. To 

check controllability a new service R is composed with the PV of another service and Fiona 

checks the composite for controllability. Computationally speaking, constructing the PV is 

faster than computing the IG or the OG. However, creating the composite service and 

checking for controllability is computationally more expensive as public view suffers from 

the state explosion problem. Figure 6.6 shows a partial view of the PV graph of the MISS 

system. 

6.6.5  Computing Interaction Graph (IG): 

An IG represents the controller point of view of a node, containing all possible states that are 

reachable at each point during execution. The IG describes a hypothesis for the controller, 

representing feasible runs of a partner service according to the interaction protocol. The IG 

can be used to determine controllability by looking for a path from the initial node to the end 

node. Figure 6.7 shows the IG of the MISS system. 

6.6.6  Computing Operating Guideline (OG):  

An OG represents a description of the behaviors of all strategies for sound executions. It 

describes the expected behavior of a partner service. This way a partner service can verify if 

its behavior matches the expected behavior for partner services. The OG can verify 

controllability by finding a path from the initial node to an end node, which will determine if 

the partner service matches the OG specification. Figure 6.8 shows the OG of the MISS 

system. 



 

6.6.7  Check for Cycles, False Nodes and Controllability

Fiona is used also to check the 

cycles avoids infinite calls to services. 

their own annotation. For computing controllability, we 

for IG, but do not support PV

Figure 316 - Partial Public View Graph of the MISS 

155 

6.6.7  Check for Cycles, False Nodes and Controllability  

check the absence of cycles and absence of false nodes. 

infinite calls to services. Checking false nodes helps to identify nodes violat

their own annotation. For computing controllability, we primarily use OG, provide support 

PV in our composition framework. 

 

Partial Public View Graph of the MISS system 

false nodes. Checking for 

entify nodes violating 

, provide support 



 

Figure 327 - Partial Interaction Graph of the MISS system

156 

 

Partial Interaction Graph of the MISS system 

 



 

Figure 338 - Partial Operating Guideline Graph of the MISS System

157 

 

Partial Operating Guideline Graph of the MISS System 



158 

 

6.7  Composite Services Safety Proofs 

In this section, it is shown that by using these model checking approaches, baseline and 

extended services are safe before, during, and after composition. 

Claim 3. A baseline service s is safe, meaning it respects custom safety criteria c, before 

composition 

First, we show baseline service s to be safe with respect to custom safety criteria c. It has 

been shown that the SPIN model checker determines whether a PROMELA model 

satisfies LTL properties [84]. We already modeled baseline services using PROMELA 

and the safety criteria based on the HIPAA law using LTL. Let this model be s and the 

safety criteria be c. Only those services s that satisfies safety criteria c based on the 

results obtained by the model checker SPIN are used, therefore showing a baseline 

service s to be safe before composition ⎕ 

Claim 4. The extended service interactions among safe baseline services s1, …,sn with 

respect to their safety criteria c1, …,cm are also safe. 

Proof. Individual baseline services are shown to be safe in Claim 3. Now we prove that 

the interactions among these services are also safe with respect to our safety criteria. We 

showed previously how to generate an oWFN from a SSCL process. It has also been 

shown that the Fiona model checker can determine the safety of interacting services 

[62],[125]. Only those services that the Fiona model checker determines that satisfy the 

safety criteria are accepted, therefore the extended services interactions among safe 

baseline services is safe ⎕ 

Claim 5. The services running within the smart home are safe before, during, and after the 

composition. 

Proof.  

Claim 3 shows that baseline services are safe with respect to their safety criteria. 



159 

 

Claim 4 shows that the interactions among safe baseline services are safe with respect to 

their safety criteria. 

Services running in the environment before composition are the baseline services that 

Claim 3 shows are safe. During the composition, Claim 4 shows that these services are 

checked ensuring safety during composition. These model checking techniques are 

incorporated into our automatic composition framework. The framework only accepts 

those composite services that pass all the safety tests. Therefore, composite services are 

safe after the composition. This shows that services running within the environment are 

safe before, during, and after the composition ⎕ 

6.8  Conclusions and future work 

We present a model checking approach to ensure the safety of composite services. Services 

are divided into the categories baseline and extended. Baseline services are assumed to be 

always up and running, while extended services are more dynamic and may come and go. An 

example based on the Medicine Information Support System for smart homes is provided 

where standard safety criteria for both types of services are checked and custom safety 

criteria is checked for baseline services. 

The model checking approach for extended services is integrated with an automatic 

composition framework supporting services of heterogeneous SOAs. This formal check 

allows implementing only services proven safe. This way the safety criteria for services are 

satisfied before, during and after compositions. Examples on how to model and check these 

services are provided using the tools SPIN for baseline services and Fiona for extended 

services. 

This model checking approach for services in environments such as the smart home 

provides a stronger argument when claiming the safety of our system. This is especially 

important for composite services such as those found in smart home environments as they 

might perform critical operation or handle sensitive data. Our approach and integration into 

an automatic composition framework ensures that services are continuously fulfilling the 



160 

 

safety criteria and that only new composite services that meet the safety criteria are accepted. 

This work contributes in providing a mechanism for having safe, reliable services of 

heterogeneous SOAs using formal methods. In addition, we formally check whether 

composite services comply with applicable custom safety criteria such as healthcare laws. 

This certainly sets a higher standard for SOA development by making the use of formal 

methods a fundamental part of the composition process for service. 

  



161 

 

CHAPTER 7.  COMPOSITION FRAMEWORK PERFORMANCE 
EVALUATION AND ANALYSIS 

 
 

7.1  Introduction 

This chapter presents a performance analysis of our composition framework. A series of 

hypothesis are introduced, several experiments conducted under different networking 

environments, the data is collected and analyzed, and a summary on the results obtained is 

presented. Throughout this work, the details of our composition framework for services of 

heterogeneous SOAs have been described and how model checking techniques were 

incorporated to ensure the safety of composite services and their interactions. Now we 

present an analysis of the performance of the composition framework using as an example 

smart home composites services. 

The examples used to test the composition framework are based on the Medicine 

Information Support System (MISS) described in chapter 4. Three different versions of the 

MISS composite service are used in the experiments. One of composite service only uses 

OSGi services and it is identified as MISS_OSGi. Other composite service only uses WS and 

it is named MISS_WS. The last composite service is automatically generated by the 

composition framework. It combines OSGi and WS and it is called MISS_COMB. The 

execution times of these three composite services are measured under a regular and a 

constrained networking environment. For the regular network an Ethernet LAN is used while 

for the constrained a wireless mesh network (WMN). Composite services were tested under 

these two networking environments as services might be accessed from locations where 

resource might be limited such as smart homes deployed rural areas. A regular LAN network 

represents what generally is found under standard networking conditions. The WMNs have 

resource constraints and are less reliability, representing networking conditions where 

resources might be more limited. Several experiments were designed and conducted based on 

the following hypothesis: 

Hypothesis 1. A regular LAN network performs better than a WMN 



162 

 

Hypothesis 2. Given the three implementations of the same composite service: 

MISS_OSGi, MISS_WS and MISS_COMB; MISS_OSGi will have the best execution 

time performance, followed by MISS_COMB, and MISS_WS will have the worst 

execution time performance. 

Hypothesis 3. Given three implementations of the same composite service: MISS_OSGi, 

MISS_WS and MISS_COMB; MISS_COMB will show less variability, followed by 

MISS_OSGi and finally the MISS_WS will have more variability. 

Hypothesis 4. A WMN has more variability that a regular LAN network. 

7.2  Experiment Setup 
 

We set up two environments to test the composition framework. The first environment is 

regular Ethernet LAN. The second environment is a WMN. The details of each experiment 

setup are provided next. 

7.2.1  Regular Network Setup 

For the experiments under a regular network, the server used is a Dell Dimension 9200 with 

Windows Vista as its operating system. The server provides supports for OSGi and WS. The 

OSGi framework used is knopflerfish version 2.2.0. This machine also runs a customized 

version of Apache jUDDI UDDI server with Apache Tomcat 5.5 as the HTTP server. 

The client machine is a Dell Optiplex GX280 PC with Windows XP as its operating 

system. The OSGi framework used is knopflerfish version 2.2.0 with the automatic 

composition framework already installed. 

These machines are under the Ethernet LAN of the Department of Computer Science at 

Iowa State University, which provides the regular networking environment. A set of four 

experiments are conducted. One experiment measures the time taken by our automatic 

composition framework to create a composite service of MISS that combines OSGi and WS. 

Another experiment measures the execution time of MISS_OSGi. Another experiment tracks 



163 

 

the execution time of MISS_WS. Finally, the execution time of MISS_COMB is measured. 

Each experiment is repeated at least a 100 times. 

7.2.2  Wireless Mesh Network Setup 

For the experiments under the WMN, the server is a Dell Optiplex GX280 with Windows XP 

as its operating system. This machine has two wireless interfaces one used for upstream 

another for downstream. The server provides supports for OSGi and WS. The OSGi 

framework used is knopflerfish version 2.2.0. This machine also runs the customized Apache 

jUDDI UDDI server with Apache Tomcat 5.5 as the HTTP server. 

The client machine is a Dell Optiplex GX280 PC with Windows XP as its operating 

system. This machine also has two wireless interfaces one for upstream the other for 

downstream. The OSGi framework used in this machine is knopflerfish version 2.2.0 with 

the composition framework already installed. 

To set up the WMN network infrastructure experiments, four computers are used: the 

server, the client, and two machines in the middle that forward packets between the client 

and the server. The Microsoft Research Wireless Mesh Toolkit [126] is installed in all the 

mesh machines to support wireless mesh network connectivity. Under the WMN, the same 

four experiments as in the regular network are conducted measuring their execution time. An 

experiment that measures the execution time of MISS_OSGi, another that tracks MISS_WS, 

the time taken by our automatic composition framework to create a composite service and the 

execution time of MISS_COMB. Each experiment is repeated at least a 100 times. 

7.3  Overhead of the Composition Framework 

This section shows the results of the time taken by the composition framework to create the 

composite service that implements MISS. The execution time of the following activities is 

measured: parsing and binding, model check, code generation, and creating the bundle. The 

parsing and binding activity includes parsing the SSCL file, querying the UDDI registry, 

getting the services binding information and binding to the services. The model checking 

activity includes the creation of the oWFN and performing the services interactions checks 

using the Fiona model checker as described in Chapter 6. The code generation activity 



164 

 

involves translating the SSCL orchestration code into executable Java code, the creation of 

the service interface, the manifest file, and the activator class. The create bundle activity 

takes the generated Java code, the service interface, the activator class, and the manifest file 

and compiles it all, creates the service JAR file and installs the new service into the OSGi 

framework. Figure 7.1 shows a summary of the average time taken by each activity for the 

experiments run under a regular networking environment and a WMN. 

 

Figure 34 - Composition time overhead for MISS 

For both cases, the figure show that the activity that consumes more time is parsing and 

binding. It also shows that there is significant difference in the parsing activity between the 

regular LAN network and the WMN. For the other activities, their time differences are 

almost similar. We believe a reason for this difference is the fact that the parsing activity 

includes network operations such as querying the UDDI server, fetching the services, and 

binding to them, which can take longer for networks with resource constraints like the WMN. 

0

2000

4000

6000

8000

10000

12000

Parsing & 

Binding

Model Check CodeGen Create 

Bundle

Total

T
im

e
 (

m
s.

)

Composition Activity

REGULAR LAN

WMN



165 

 

These results show evidence in support of hypothesis 1, that the regular network performs 

better than the WMN. 

7.4  Total Parse Time 

It is important to study the total time it takes to create a composite service as this operation 

imposes overhead. For that reason, a careful look at the parsing process of our composition 

framework is taken as this activity took the longest time to. The parsing process has the 

following activities: parsing, discovery, binding to the services, download the bundles JAR 

files, and generating WS stub code. The parsing activity reads data from the SSCL file to 

produce the executable Java code. The discovery queries the UDDI registry to get the 

binding information of the services. The binding activity gets the actual service and binds to 

it. The file download measures the average time to download the bundle JAR file for services 

provided in OSGi. The WS stub creation records the time to generate the stub code to 

communicate with a WS. The results of the parsing process under both networks are shown 

in Figure 7.2. 

As shown in the figures, on average most activities consumes a relatively small amount 

of time with the exception of binding. The binding activity, use the partnerLinkTypes info in 

the SSCL file to get the services interface name, query the UDDI registry and use the 

services information to locate them and bind to them. As this activity does several 

networking operations, we believe this is the key factor for these differences. The fact that 

this activity executes faster under a regular LAN network than under a WMN, provides 

evidence in support of Hypothesis 1. 



166 

 

 

Figure 35 - Parse and binding overhead 

7.5  Composite Services Performance Comparison 

This subsection analyzes and compares the execution time of the three implementations of 

MISS using different SOA composition approaches and deployed under different network 

environments. The previous sections presented the overhead added by the composition 

framework. In this section, the execution times of the composite services using a single SOA 

are compared with the composite service generated automatically by our composition 

framework that relies on services of heterogeneous SOAs.  

The execution times of MISS_OSGI, MISS_COMB, and MISS_WS are measured and 

their average computed. Figure 7.3 shows the average time and the standard deviation for the 

three composite services executed under a regular LAN network. Figure 7.4 shows data that 

includes the minimum and maximum. From the figure, it can be observed that MISS_OSGi 

has the best execution time performance, MISS_COMB had the second best performance 

while MISS_WS had the worst performance. The fact that WS are slower that OSGi, but are 

more popular and widely used, gives an upper bound on the acceptable execution time. 

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

Parsing Discovery Binding File 

Download

WS Stub 

Creation

TOTAL

T
im

e
 (

m
s.

)

Parsing Stage

REGULAR LAN

WMN



167 

 

Having reduced the execution time from the worst-case scenario by introducing 

heterogeneous services, we believe is a great accomplishment. MISS_COMB also is closer to 

MISS_OSGi than to MISS_WS. These results provide evidence in support of hypothesis 2. 

The data for variability shows also that MISS_OSGI and MISS_COMB standard deviation 

and minimum/maximum ranges are close. It also shows MISS_COMB with less variability. 

Both MISS_OSGI and MISS_COMB show less variability than MISS_WS. These results 

provide evidence in support of hypothesis 3. 

 

Figure 36 - Composite services in a regular network with their standard deviation. 

0

500

1000

1500

2000

2500

3000

MISS_OSGI MISS_COMB MISS_WS

E
xe

cu
ti

o
n

 T
im

e 
(m

s.
)

Implementation

Execution Time - Regular LAN Network with Std. 
Deviation

Std. dev



168 

 

 

Figure 37 - Composite services in a regular network with their minimum and maximum. 

Figure 7.5 shows the average time and the standard deviation for the three composite 

services running under a WMN with their standard deviation while figure 7.6 shows the data 

summary that includes the minimum and maximum. The time difference between 

MISS_OSGi and MISS_COMB is relatively small. The MISS_OSGi has the best 

performance of all three, closely followed by MISS_COMB, and MISS_WS had the worst 

performance. This data presents evidence in support of hypothesis 2. For WMN there is a 

dramatic difference in the execution time of MISS_WS, taking approximately 3 times longer 

than the other two versions of the composite service. In terms of variability, a similar result is 

obtained where MISS_COMB shows less variability than MISS_OSGi and MISS_WS shows 

the greatest variability. These results show evidence in support of hypothesis 3. 

0

500

1000

1500

2000

2500

3000

3500

MISS_OSGI MISS_COMB MISS_WS

E
xe

cu
ti

o
n

 T
im

e 
(m

s.
)

Implementation

Execution Time - Regular LAN Network with Min/Max

Min/Max



169 

 

 

Figure 38 - Composite services in a WMN with their standard deviation. 

 

Figure 39- Composite services in a WMN network with their minimum and maximum. 

0

2000

4000

6000

8000

10000

12000

MISS_OSGI MISS_COMB MISS_WS

E
xe

cu
ti

o
n

 T
im

e 
(m

s.
)

Implementation

Execution Time - WMN with Std. Deviation

Std. dev

0

2000

4000

6000

8000

10000

12000

14000

MISS_OSGI MISS_COMB MISS_WS

E
xe

cu
ti

o
n

 T
im

e
(m

s.
)

Implementation

Execution Time - WMN with Min./Max.

Std. dev



170 

 

Figure 7.7 shows the result of the analysis of the performance of the MISS_OSGi 

composite service implementation in each type of network, with their respective standard 

deviations. Figure 7.8 show a summary with the minimum and maximum range values. The 

figures show that the MISS_OSGi composite service performs better under a regular network 

showing evidence that supports hypothesis 1. In terms of variability, it is observed that the 

standard deviation is bigger for the WMN environment. The minimum, maximum range is 

also wider for the WMN, results that sustain hypothesis 4 that the WMN shows more 

variability.  

 

 

Figure 40 - MISS_OSGi in a regular network and a WMN with their std. deviation. 

0

500

1000

1500

2000

2500

3000

Regular WMN

E
xe

cu
ti

o
n

 T
im

e 
(m

s.
)

Network Environment

Execution Times of MISS_OSGi with Std. Deviation

Std. dev



171 

 

 

Figure 41 - MISS_OSGi in a regular network and a WMN with their minimum and 

maximum. 

Figure 7.9 shows the performance analysis of the MISS_COMB composite service 

implementation under each type of network, with their respective standard deviations. Figure 

7.10 shows a summary with the minimum and maximum values. Notice from the figures that 

the MISS_COMB composite service performs better under a regular network than under a 

WMN as evidence for hypothesis 1. With respect to variability, the standard deviation is 

bigger for the WMNs as well as the minimum, maximum range, showing evidence in favor 

of hypothesis 4, that WMN have more variability. 

0

500

1000

1500

2000

2500

3000

3500

Regular WMN

E
xe

cu
ti

o
n

 T
im

e 
(m

s.
)

Network Environment

Execution Times of MISS_OSGi with Min./Max.

Min/Max



172 

 

 

Figure 42 - MISS_COMB in a regular network and a WMN with their std. deviation 

 

Figure 43 - MISS_COMB in a regular network and a WMN with their minimum and 

maximum 

0

500

1000

1500

2000

2500

3000

Regular LAN WMN

R
es

p
o

n
se

 T
im

e 
(m

s.
)

Implementation

Execution Time of MISS_COMB with Std. Deviation

Std. dev

0

500

1000

1500

2000

2500

3000

3500

Regular LAN WMN

E
xe

cu
ti

o
n

 T
im

e 
(m

s.
)

lmplementation

Execution Time of MISS_COMB with Min./Max.

Min/Max



173 

 

Figure 7.11 summarizes the performance results for the MISS_WS composite 

implementation in each type of network with their respective standard deviations. Figure 7.12 

shows the minimum and maximum range. As in the previous two cases, it is observed from 

the figures that the MISS_WS composite service performs better under a regular network in 

support of hypothesis 1. MISS_WS presents the case with the biggest difference in 

performance, having the service deployed in a WMN taking about three times as much time 

to execute compared to the same service deployed in a regular network. This evidence is the 

strongest in support of hypothesis 1. With respect to variability, the standard deviation is 

bigger for the WMNs as well as the minimum, maximum range. Again, MISS_WS under a 

WMN provides the biggest difference of all cases, providing evidence that supports 

hypothesis 4 that the WMN introduces more variability. 

 

 

Figure 441 - MISS_WS in a regular network and a WMN with their standard deviation 

0

2000

4000

6000

8000

10000

12000

Regular LAN WMN

E
xe

cu
ti

o
n

 T
im

e 
(m

s.
)

Implementation

Execution Time of MISS_WS with Std. Deviation

Std dev



174 

 

 

Figure 45 - MISS_WS in a regular network and a WMN with their minimum and 

maximum 

 

Based on our hypothesis and the results obtained from our experiments we conclude that:  

• The composition framework introduces overhead when creating a composite service, 

however this overhead is a onetime operation. 

• The performance of the resulting MISS_COMB composite services automatically 

generated by the composition framework is closer to the best-case scenario of 

MISS_OSGi than to the worst-case scenario of MISS_WS. 

• Hypothesis 1 holds as services deployed in the regular network consistently performed 

better than those deployed under the WMN in our experiments. 

• Hypothesis 2 holds as MISS_OSGi performed better than MISS_COMB and both 

performed better than MISS_WS in both kinds of network environment in our 

experiments. 

0

2000

4000

6000

8000

10000

12000

14000

Regular LAN WMN

E
xe

cu
ti

o
n

 T
im

e 
(m

s.
)

Implementation

Execution Time of MISS_WS with Min./Max.

Min/Max



175 

 

• Hypothesis 3 holds as the implementation with less variability under both types of 

network is MISS_COMB in our experiments 

• Hypothesis 4 holds as the WMN introduced more variability that a regular network in our 

experiments.  



176 

 

CHAPTER 8.  CONCLUSIONS AND FUTURE WORK 
 
 

This chapter summarizes our work, contributions, and present future work. 

8.1  Summary 

Pervasive environments such as the Smart Home rely on the SOC paradigm for the 

development of services and applications. Different SOA standards have been proposed and 

developed following the SOC principles of language-independence and platform-

independence. However, interactions among services of heterogeneous SOAs are a non-

trivial task. As the number of services and the complexity of applications increases, 

combining them becomes more necessary. The goal of this work is to provide a framework 

that automatically creates composite services supporting heterogeneous SOAs, uses model 

checking techniques to ensure the safety of composite services and their interactions, and has 

acceptable performance. Pervasive computing environments such as the smart home services 

would benefit of this type of solution as it can reduce the development time, cost, and 

learning curve. 

We present a set of fundamental services such as a notification, medicine management, 

and a middleware service as an example. The Medicine Information Support System (MISS) 

is used as our main composite service example in the discussions throughout this dissertation. 

The details of our composition framework for services of heterogeneous SOAs are provided. 

At a high level, our framework operates as follows: a description of the composite service is 

provided using the simple XML-based language SSCL, the framework searches for services 

within the context or look for them in a customized service registry, gets the binding 

information, checks the safety of the composite service, and automatically generates the 

implementation. A set of safety criteria is defined and the composition framework checks 

that composite services and their interactions comply with it. For checking compliance, 

formal software analysis techniques of model checking are integrated into our composition 

framework. Based on their characteristics services are divided into baseline and extended. A 

semi-automatic approach for checking baseline services is presented along with an automatic 

approach for checking extended services. A performance analysis is provided which 



177 

 

compares the execution times of composite services using different composition strategies. 

The examples used are based on MISS and details on the different composites using current 

composition techniques are compared with the composite services generated automatically 

by our composition framework. A comparison of the execution performance of these services 

is provided. The experiment measured the overhead that the composition process adds. These 

experiments were conducted under two networking environments: a regular LAN network 

and a wireless mesh network. The two networking environments are used to contrast how the 

composition framework would perform under regular network condition and under a 

constrained networking environment. 

8.2 Contributions 

The key contributions of this work are: 

• A set of requirements and capabilities for scripting languages used for orchestrations 

with a justification of why we understand these should be part of any SOA standard. 

• The design, implementation, and testing of a set of essential services for pervasive 

environments such as the smart home. 

• A language for specifying the workflow of composite services called the Simple 

Service Composition Language (SSCL). The SSCL language provides is platform, 

language, and SOA independence. It is inspired in existing technologies, complies 

with the requirements we established for scripting languages for orchestrations 

providing also SOA-independence, allowing for compositions of services of 

heterogeneous SOAs. 

• A customized universal service registry where services information such the 

description and binding information can be stored, searched, and retrieved. This 

registry allows registering services of heterogeneous SOAs and is essential for our 

framework to work automatically. 



178 

 

• The SSCL2OSGi composition framework, that accepts SSCL files as input and 

automatically produces an OSGi service that implements the composite using services 

of heterogeneous SOAs. The framework automatically searches the services, 

performs a safety check, creates the composite service using services from 

heterogeneous SOAs, installs the composite service, and deploys it. 

• A combined model-checking approach for checking the safety of baseline and 

extended services. Baseline services are checked for compliance with standard and 

custom safety criteria in a semi-automated way. Extended services are checked for 

standard safety criteria in a fully automated way. The automatic check for extended 

services is integrated as part of the composition framework. Only services that pass 

all the safety checks are implemented. 

• SSCL is a language inspired in WS-BPEL and SCDL. We claim and justify that the 

semantic of SSCL and WS-BPEL are compatible and that the design of SSCL allows 

translating SSCL files into oWFN. Compatibility among SSCL files and WS-BPEL 

files is defined. We claim and show that the oWFN produced from a WS-BPEL file 

and a compatible SSCL file are the same. With these results, it is shown that the 

composition framework can be used with SSCL, produce an oWFN model of 

composite services, and use existing tools to analyze oWFN. 

• A performance study of the composition framework execution time and the overhead 

it adds. Several examples are provided by creating different composite services. The 

execution times of these different composite services are compared. These 

composites are deployed under a regular network and under a WMN constrained 

environment. A detailed analysis and a summary of the performance results are 

provided. 

8.3 Future Work 

• Extend the composition framework to support other SOAs and test the performance 

of these additions 



179 

 

• Extend SSCL to support other commands without compromising its simplicity and 

SOA independence. 

• Extend the formal analysis to have automated modeling of baseline services 



180 

 

REFERENCES 
 

[1] N. Noury, G. Virone, P. Barralon, J. Ye, V. Rialle, and J. Demongeot, “New trends in 
health smart homes,” 5th International Workshop on Enterprise Networking and 
Computing in Healthcare Industry, 2003, pp. 118-127. 

[2] M. Papazoglou, P. Traverso, S. Dustdar, and F. Leymann, “Service-Oriented 
Computing: State of the Art and Research Challenges,” Computer, vol. 40, 2007, pp. 
38-45. 

[3] S. Dustdar and W. Schreiner, “A survey on web services composition,” International 
Journal on Web and Grid Services, vol. 1, 2005, pp. 1-30. 

[4] D. Marples and P. Kriens, “The Open Services Gateway Initiative: an introductory 
overview,” IEEE Communications Magazine, vol. 39, 2001, pp. 110-114. 

[5] “OSOA - Open SOA Collaboration.” Available: 
http://www.osoa.org/display/Main/Home. [Accessed: Jun. 23, 2010]. 

[6] “OASIS - Who We Are - Mission.” Available: http://www.oasis-open.org/who/. 
[Accessed: Jun. 23, 2010]. 

[7] “IEEE SOA Standards.” Available: http://www.soa-standards.org/. [Accessed: Jun. 
23, 2010]. 

[8] “OSGi Alliance | Main / OSGi Alliance.” Available: 
http://www.osgi.org/Main/HomePage. [Accessed: Jun. 23, 2010]. 

[9] “OASIS SOA Reference Model TC,” Jun. 2010. Available: http://www.oasis-
open.org/committees/tc_home.php?wg_abbrev=soa-rm. [Accessed: Jun. 23, 2010]. 

[10] N. Ibrahim and F.L. Mouel, " A Survey on Service Composition Middleware in 
Pervasive Environments", International Journal of Computer Science Issues, Volume 
1, August 2009, pp. 1-12. 

[11] D. Wu, E. Sirin, J. Hendler, D. Nau, and B. Parsia, “Automatic Web Services 
Composition Using SHOP2,” Twelfth World Wide Web Conference, 2003. 

[12] “Service Component Architecture Home - Open SOA Collaboration.” Available: 
http://www.osoa.org/display/Main/Service+Component+Architecture+Home. 
[Accessed: Jun. 23, 2010]. 



181 

 

[13] M.B. Dwyer, J. Hatcliff, R. Robby, C.S. Pasareanu, and W. Visser, “Formal Software 
Analysis Emerging Trends in Software Model Checking,” Future of Software 
Engineering, 2007. FOSE '07, 2007, pp. 120-136. 

[14] T. Koskela and K. Väänänen-Vainio-Mattila, “Evolution towards smart home 
environments: empirical evaluation of three user interfaces,” Personal and Ubiquitous 
Computing,  vol. 8, Jul. 2004, pp. 234-240. 

[15] S. Dengler, A. Awad, and F. Dressler, “Sensor/Actuator Networks in Smart Homes 
for Supporting Elderly and Handicapped People,” Proceedings of the 21st 
International Conference on Advanced Information Networking and Applications 
Workshops - Volume 02, IEEE Computer Society, 2007, pp. 863-868. 

[16] M. Satyanarayanan, “Pervasive Computing: Vision and Challenges,” IEEE Personal 
Communications,  vol. 8, 2001, pp. 10--17. 

[17] D. Saha and A. Mukherjee, “Pervasive Computing: A Paradigm for the 21st 
Century,” Computer,  vol. 36, 2003, pp. 25-31. 

[18] S. Helal, “Programming Pervasive Spaces,” IEEE Pervasive Computing,  vol. 4, 
2005, pp. 84-87. 

[19] J. King, R. Bose, H. Yang, S. Pickles, and A. Helal, “Atlas: A Service-Oriented 
Sensor Platform Hardware and Middleware to Enable Programmable Pervasive 
Spaces.” Proceedings of the 31st IEEE Conference on Local Computer Networks, 
2006. 

[20] B.A. Miller, T. Nixon, C. Tai, and M.D. Wood, “Home networking with Universal 
Plug and Play,” Communications Magazine, IEEE,  vol. 39, Dec. 2001, pp. 104 -109. 

[21] R. Gupta, S. Talwar, and D.P. Agrawal, “Jini Home Networking: A Step toward 
Pervasive Computing,” Computer,  vol. 35, 2002, pp. 34-40. 

[22] C. Lee, D. Nordstedt, and S. Helal, “Enabling smart spaces with OSGi,” Pervasive 
Computing, IEEE,  vol. 2, 2003, pp. 89-94. 

[23] H. Elzabadani, A. Helal, B. Abdulrazak, and E. Jansen, “Self-sensing spaces: smart 
plugs for smart environments,” Proceedings of the 3rd International Conference on 
Smart Homes and Health Telematics, 2005. 

[24] “Iowa State University Smart Home Project.” Available: 
http://smarthome.cs.iastate.edu. [Accessed: Jun. 23, 2010]. 



182 

 

[25] S. Helal, “The Gator Tech Smart House: A Programmable Pervasive Space,” 
Computer, Vol. 38, No. 3. (2005), pp. 50-60. 

[26] R. Bose, J. King, S. Pickles, H. Elzabadani, and A. Helal, “Building Plug-and-Play 
Smart Homes Using the Atlas Platform.” In 4th International Conference on Smart 
Homes and Health Telematic, 2006. 

[27] C.D. Kidd, R. Orr, G.D. Abowd, C.G. Atkeson, Irfan A, B. Macintyre, E. Mynatt, 
T.E. Starner, W. Newstetter, “The Aware Home: A Living Laboratory for Ubiquitous 
Computing Research,” Cooperative Buildings: Integrating Information, Organizations 
and Architecture, 1999. 

[28] H. Kautz, L. Arnstein, G. Borriello, O. Etzioni, and D. Fox, “An overview of the 
assisted cognition project,” Workshop on Automation as Caregiver: The Role of 
Intelligent Technology in Elder, 2002. 

[29] M. Papazoglou and J.-J. Dubray. A survey of web service technologies. Technical 
Report DIT-04-058, Department of Information and Communication Technology, 
University of Trento, June 2004.  

[30] “seekda! - About seekda.” Available: http://seekda.com/. [Accessed: Jun. 23, 2010]. 

[31] “X Methods.” Available: http://www.xmethods.net/ve2/index.po. [Accessed: Jun. 23, 
2010]. 

[32] “List of Web service specifications.”  Available: 
http://www.worldlingo.com/ma/enwiki/en/List_of_Web_service_specifications. 
[Accessed: Jun. 23, 2010]. 

[33] “Web Tools Platform (WTP) Project.” Available: http://www.eclipse.org/webtools/. 
[Accessed: Jun. 23, 2010]. 

[34] S.M. Kim and M. Rosu, “A Survey of Public Web Services,” E-Commerce and Web 
Technologies, 2004, pp. 96-105. 

[35] “Apache jUDDI - Welcome to jUDDI.” Available: http://ws.apache.org/juddi/. 
[Accessed: Jun. 23, 2010]. 

[36] “OpenUDDI » Welcome.” Available: http://openuddi.sourceforge.net/. [Accessed: 
Jun. 23, 2010]. 

[37] “UDDI4J - Links.” Available: http://uddi4j.sourceforge.net/. [Accessed: Jun. 23, 
2010]. 



183 

 

[38] E. Topalis, S. Koubias, G. Papadopoulos, and I. Nikiforakis, “A Novel Architecture 
for Remote Home Automation e-Services on an OSGi Platform via High-Speed 
Internet Connection Ensuring QoS Support by Using RSVP,” IEEE Transactions on 
Consumer Electronics,  vol. 48, pp. 825--833. 

[39] OSGi Alliance, “OSGi Service Platform Release 4,” 2007. Available: 
http://www.osgi.org/Release4/HomePage. [Accessed: Jun. 23, 2010]. 

[40] “Knopflerfish OSGi - open source OSGi service platform.” Available: 
http://www.knopflerfish.org/. [Accessed: Jun. 23, 2010]. 

[41] “Oscar Bundle Repository.” Available: http://oscar-osgi.sourceforge.net/. [Accessed: 
Jun. 23, 2010]. 

[42] “Eclipse Equinox.” Available: http://www.eclipse.org/equinox/. [Accessed: Jun. 23, 
2010]. 

[43] “Apache Felix - Index.” Available: http://felix.apache.org/site/index.html. [Accessed: 
Jun. 23, 2010]. 

[44] T. Gu, H. Pung, and D. Zhang, “Toward an OSGi-based infrastructure for context-
aware applications,” IEEE Pervasive Computing, vol. 3, 2004, pp. 66-74. 

[45] E. Karakoc, K. Kardas, and P. Senkul, “A Workflow-Based Web Service 
Composition System,” International Conference on Web Intelligence and Intelligent 
Agent Technology,  Los Alamitos, CA, USA: IEEE Computer Society, 2006, pp. 
113-116. 

[46] J. Rao and X. Su, “A Survey of Automated Web Service Composition Methods,” 
Semantic Web Services and Web Process Composition, 2005, pp. 43-54. 

[47] S. Ponnekanti and A. Fox, “SWORD: A developer toolkit for web service 
composition,” Proceedings of the 11th International WWW Conference 
(WWW2002), 2002. 

[48] A. Wood, J. Stankovic, G. Virone, L. Selavo, Z. He, Q. Cao, T. Doan, Y. Wu, L. 
Fang, and R. Stoleru, “Context-aware wireless sensor networks for assisted living and 
residential monitoring,” IEEE Network, vol. 22, 2008, pp. 26-33. 

[49] R. Redondo, A. Vilas, M. Cabrer, J. Arias, and M. Lopez, “Enhancing Residential 
Gateways: OSGi Services Composition,” International Conference on Consumer 
Electronics, 2007, pp. 1-2. 



184 

 

[50] J. Anke and C. Sell, “Seamless Integration of Distributed OSGi Bundles into 
Enterprise Processes using BPEL,” Kommunikation in Verteilten Systemen, 2007. 

[51] C. Lee, S. Ko, E. Kim, and W. Lee, “Enriching OSGi Service Composition with Web 
Services,” IEICE Transactions,  vol. 92-D, 2009, pp. 1177-1180. 

[52] “Apache Tuscany.” Available: http://tuscany.apache.org/. [Accessed: Jun. 23, 2010].  

[53] “Fabric3 - Open Source SCA.” Available: http://www.fabric3.org/. [Accessed: Jun. 
23, 2010]. 

[54] “Newton Framework.” Available: http://newton.codecauldron.org/. [Accessed: Jun. 
23, 2010]. 

 

[55] P. Cousot and R. Cousot, “Refining Model Checking by Abstract Interpretation,” 
Automated Software Engineering,  vol. 6, Jan. 1999, pp. 69-95. 

[56] N. Bjørner, A. Browne, E. Chang, M. Colón, A. Kapur, Z. Manna, H. Sipma, and T. 
Uribe, “STeP: Deductive-algorithmic verification of reactive and real-time systems,” 
Computer Aided Verification, 1996, pp. 415-418. 

[57] C. Flanagan and S. Qadeer, “Predicate abstraction for software verification,” 
Proceedings of the 29th ACM SIGPLAN-SIGACT symposium on Principles of 
programming languages, 2002, pp. 191-202. 

[58] S. Khurshid, C. PĂsĂreanu, and W. Visser, “Generalized Symbolic Execution for 
Model Checking and Testing,” Tools and Algorithms for the Construction and 
Analysis of Systems, 2003, pp. 553-568. 

[59] C. Flanagan and P. Godefroid, “Dynamic partial-order reduction for model checking 
software,” SIGPLAN,  vol. 40, 2005, pp. 110-121. 

[60] I. Akyildiz and X. Wang, “A survey on wireless mesh networks,” IEEE 
Communications Magazine,  vol. 43, 2005, pp. S23-S30. 

[61] N. Lohmann, “A Feature-Complete Petri Net Semantics for WS-BPEL 2.0,” Web 
Services and Formal Methods, 2008, pp. 77-91. 

[62] P. Massuthe and D. Weinberg, “Fiona: A Tool to Analyze Interacting Open Nets,” 
Proceedings of the 15th German Workshop on Algorithms and Tools for Petri Nets, 
2008, pp. 99-104. 



185 

 

[63] M.J. May, C.A. Gunter, and I. Lee, “Privacy APIs: Access Control Techniques to 
Analyze and Verify Legal Privacy Policies,” Proceedings of the 19th IEEE workshop 
on Computer Security Foundations, 2006, pp. 85-97. 

[64] M. Lee, J. Zheng, Y. Ko, and D. Shrestha, “Emerging standards for wireless mesh 
technology,” IEEE Wireless Communications,  vol. 13, 2006, pp. 56- 63. 

[65] I.F. Akyildiz, X. Wang, and W. Wang, “Wireless mesh networks: a survey,” 
Computer Networks,  vol. 47, Mar. 2005, pp. 445-487. 

[66] K. Havelund and T. Pressburger, “Model checking JAVA programs using JAVA 
PathFinder,” International Journal on Software Tools for Technology Transfer 
(STTT),  vol. 2, Mar. 2000, pp. 366-381. 

[67] “Spin - Formal Verification.” Available: http://spinroot.com/. [Accessed: Jun. 23, 
2010]. 

[68] J.M. Reyes Álamo, J. Wong, R. Babbitt, and C. Chang, “MISS: Medicine Information 
Support System in the Smart Home Environment,” Smart Homes and Health 
Telematics, 2008, pp. 185-199. 

[69] J.M. Reyes Álamo, J. Wong, R. Babbitt, H. Yang, and C. Chang, “Using Web 
Services for Medication Management in a Smart Home Environment,” Ambient 
Assistive Health and Wellness Management in the Heart of the City, 2009, pp. 265-
268. 

[70] I. Korhonen, J. Parkka, and M. Van Gils, “Health monitoring in the home of the 
future,” IEEE Engineering in Medicine and Biology Magazine,  vol. 22, 2003, pp. 66-
73. 

[71] “The Wireless Hive Networks Manifesto.” Available: http://www.ieee-
whnc.org/WHN-Manifesto.pdf. [Accessed: Jun. 23, 2010]. 

[72] “Phidgets Inc. - Unique and Easy to Use USB Interfaces.” Available: 
http://www.phidgets.com/. [Accessed: Jun. 23, 2010]. 

[73] M. Vastenburg, D. Keyson, and H. de Ridder, “Considerate home notification 
systems: a field study of acceptability of notifications in the home,” Personal and 
Ubiquitous Computing,  vol. 12, Nov. 2008, pp. 555-566. 

[74] “Medical Guardian Medical Alert Systems.” Available: 
http://www.medicalguardian.com/. [Accessed: Jun. 23, 2010]. 



186 

 

[75] “Home Security Store | Home Security Camera | Wireless Security Systems.” 
Available: http://www.homesecuritystore.com/. [Accessed: Jun. 23, 2010]. 

[76] “AlarmCare | Senior Medical Alarm • Emergency Alert Button • Personal Alarm 
System.” Available: http://www.myalarmcare.com/. [Accessed: Jun. 23, 2010]. 

[77] “Building smart services for smart home.”. In Proceedings of 4th IEEE International 
Workshop on Networked Appliances, 2002, pp. 215–224. 

[78] Tanmoy Sarkar, “A Web–based Architecture for Usability of Service Oriented 
Environments,” 6th International Conference on Smart Homes and Health 
Telematics, 2008. 

[79] J.M. Reyes Álamo and J. Wong, “Service-Oriented Middleware for Smart Home 
Applications,” Wireless Hive Networks,  Austin, Texas: 2008. 

[80] C.D. Nugent, D. Finlay, R. Davies, C. Paggetti, E. Tamburini, and N. Black, “Can 
Technology Improve Compliance to Medication?” 3rd International Conference on 
Smart Homes and Health Telematics, 2005. 

[81] M. Aiello, “The Role ofWeb Services at Home,” International Conference on Internet 
and Web Applications and Services, 2006, p. 164. 

[82] A. Bottaro, E. Simon, S. Seyvoz, and A. Gerodolle, “Dynamic Web Services on a 
Home Service Platform,” 22nd International Conference on Advanced Information 
Networking and Applications, 2008, pp. 378-385. 

[83] K. Romer and F. Mattern, “The design space of wireless sensor networks,” IEEE 
Wireless Communications,  vol. 11, 2004, pp. 54-61. 

[84] G.J. Holzmann, The SPIN Model Checker: Primer and Reference Manual, Addison-
Wesley Professional, 2003. 

[85] R.M. Babbitt, “A service-oriented privacy model for smart home environments,” 
Iowa State University, 2006. 

[86] OCR, “Summary of the HIPAA Privacy Rule.” Available: 
http://www.hhs.gov/ocr/privacy/hipaa/understanding/summary/privacysummary.pdf. 
[Accessed: Jun. 23, 2010]. 

[87] D. Wan, “Magic Medicine Cabinet: A Situated Portal for Consumer Healthcare,” 
First International Symposium on Handheld and Ubiquitous Computing,  vol. 1707, 
1999, p. 352-355 



187 

 

[88] J. Brusey, M. Harrison, C. Floerkemeier, and M. Fletcher, “Reasoning about 
uncertainty in location identification with RFID,” Workshop on Reasoning with 
Uncertainty in Robotics at IJCAI, 2003. 

[89] C. Floerkemeier, M. Lampe, and T. Schoch, “The Smart Box Concept for Ubiquitous 
Computing Environments,” in Smart Objects Conference, 2003. 

[90] F. Siegemund and C. Floerkemeier, “Interaction in Pervasive Computing Settings 
using Bluetooth-enabled Active Tags and Passive RFID Technology together with 
Mobile Phones”, IEEE PerCom, 2003. 

[91] C. Paggetti and E. Tamburini, “Remote Management of Integrated Home Care 
Services: the DGHome Platform,” 3rd International Conference on Smart Homes and 
Health Telematics, 2005. 

[92] “e-pill Medication Reminders: Pill Dispenser, Vibrating Watch, Pill Box Timer & 
Alarms.” Available: http://www.epill.com/. [Accessed: Jun. 23, 2010]. 

[93] M. Lampe and C. Flörkemeier, “The Smart Box application model,” Advances in 
Pervasive Computing, 2004, pp. 351-356. 

[94] A.Y. Szeto and J.A. Giles, “Improving oral medication compliance with an electronic 
aid,” IEEE Engineering in Medicine and Biology Magazine: The Quarterly Magazine 
of the Engineering in Medicine & Biology Society,  vol. 16, Jun. 1997, pp. 48-54, 58. 

[95] D. Vergnes, S. Giroux, and D. Chamberland-Tremblay, “Interactive Assistant for 
Activities of Daily Living,” 3rd International Conference on Smart Homes and Health 
Telematics, 2005. 

[96] V. Fook, J. Tee, K. Yap, A. Phyo Wai, J. Maniyeri, B. Jit, and P. Lee, “Smart Mote-
Based Medical System for Monitoring and Handling Medication Among Persons with 
Dementia,” Pervasive Computing for Quality of Life Enhancement, 2007, pp. 54-62. 

[97] “WebMD Mobile for Apple iPhone.” Available: http://www.webmd.com/mobile. 
[Accessed: Jun. 23, 2010]. 

[98] “Google Health.” Available: http://www.google.com/health/. [Accessed: Jun. 23, 
2010]. 

[99] “HealthVault : Home.” Available: http://www.healthvault.com/. [Accessed: Jun. 23, 
2010]. 



188 

 

[100] L.M. Ni, Y. Liu, Y.C. Lau, and A.P. Patil, “LANDMARC: Indoor Location Sensing 
Using Active RFID,” Wireless Networks,  vol. 10, Nov. 2004, pp. 701-710. 

[101] “U S Food and Drug Administration Home Page.” Available: http://www.fda.gov/. 
[Accessed: Jun. 23, 2010]. 

[102] “Welcome to PDR.NET - The Physicians' Desk Reference web site providing 
prescription drug information and more.” Available: http://www.pdr.net/. [Accessed: 
Jun. 23, 2010]. 

[103] R. Want, “Enabling Ubiquitous Sensing with RFID,” Computer,  vol. 37, 2004, pp. 
84-86. 

[104] A. Sarriff, N.A. Aziz, Y. Hassan, P. Ibrahim, and Y. Darwis, “A study of patients' 
self-interpretation of prescription instructions,” Journal of Clinical Pharmacy and 
Therapeutics,  vol. 17, Apr. 1992, pp. 125-128. 

[105] J.M. Mazzullo, L. Lasagna, and P.F. Griner, “Variations in interpretation of 
prescription instructions. The need for improved prescribing habits,” JAMA: The 
Journal of the American Medical Association,  vol. 227, Feb. 1974, pp. 929-931. 

[106] “XML Schema Part 2: Datatypes Second Edition.” Available: 
http://www.w3.org/TR/xmlschema-2/. [Accessed: Jun. 23, 2010]. 

[107] O. Gruber, B.J. Hargrave, J. McAffer, P. Rapicault, and T. Watson, “The Eclipse 3.0 
platform: adopting OSGi technology,” IBM Systems Journal Archive,  vol. 44, 2005, 
pp. 289-299. 

[108] “Apache Axis - Web Services.” Available: http://ws.apache.org/axis/. [Accessed: Jun. 
23, 2010]. 

[109] A. Ng, S. Chen, and P. Greenfield, “An Evaluation of Contemporary Commercial 
SOAP Implementations,” In AWSA, 2004, pp. 64--71. 

[110] “Invoking Web services with Java clients,” Nov. 2003. Available: 
http://www.ibm.com/developerworks/webservices/library/ws-javaclient/index.html. 
[Accessed: Jun. 23, 2010]. 

[111] J.M. Reyes Álamo, H. Yang, J. Wong, R. Babbitt, and C.K. Chang, “Support for 
Medication Safety and Compliance in Smart Home Environments,” International 
Journal of Advanced Pervasive and Ubiquitous Computing,  vol. 1, 2009, pp. 42-60. 



189 

 

[112] H. Schlingloff, A. Martens, and K. Schmidt, “Modeling and Model Checking Web 
Services,” Electronic Notes in Theoretical Computer Science, vol. 126, Mar. 2005, 
pp. 3-26. 

[113] X. Fu, T. Bultan, and J. Su, “Analysis of interacting BPEL web services,” 
Proceedings of the 13th international conference on World Wide Web,  New York, 
NY, USA: ACM, 2004, pp. 621-630. 

[114] C. Gao, R. Liu, Y. Song, and H. Chen, “A Model Checking Tool Embedded into 
Services Composition Environment,” Grid and Cooperative Computing, International 
Conference on,  Los Alamitos, CA, USA: IEEE Computer Society, 2006, pp. 355-
362. 

[115] J.M. Reyes Álamo, H. Yang, J. Wong, and C.K. Chang, “Automatic Service 
Composition with Heterogeneous Service-Oriented Architectures,” ICOST 2010. 

[116] R. Hamadi and B. Benatallah, “A Petri net-based model for web service 
composition,” Proceedings of the 14th Australasian database conference - Volume 17,  
Adelaide, Australia: Australian Computer Society, Inc., 2003, pp. 191-200. 

[117] K. Schmidt, “Controllability of open workflow nets,” IN: EMISA. LNI, BONNER 
KÖLLEN VERLAG,  vol. 75, 2005, pp. 236--249. 

[118] G.J. Holzmann, “The Model Checker SPIN,” Software Engineering,  vol. 23, 1997, 
pp. 279-295. 

[119] T. Murata, “Petri nets: Properties, analysis and applications,” Proceedings of the 
IEEE,  vol. 77, 2002, pp. 580, 541. 

[120] N. Lohmann, “A feature-complete Petri net semantics for WS-BPEL 2.0 and its 
compiler BPEL2oWFN,” IN WS-FM 2007, LNCS, 2007. 

[121] P. Massuthe, W. Reisig, and K. Schmidt, “An Operating Guideline Approach to the 
SOA,” Annals of Mathematics, Computing & Teleinformatics,  vol. 1, 2005, pp. 35--
43. 

[122] C. Stahl, A Petri net semantics for BPEL, Technical Report 188, Humboldt-
Universität zu Berlin, June 2005. 

[123] S. Hinz, K. Schmidt, and C. Stahl, “Transforming BPEL to Petri Nets,” Business 
Process Management, 2005, pp. 220-235. 



190 

 

[124] “BPEL2oWFN - GNU Project - Free Software Foundation.” Available: 
http://www.gnu.org/software/bpel2owfn/. [Accessed: Jun. 23, 2010]. 

[125] “Fiona Model Checker.” Available: http://www.service-technology.org/fiona. 
[Accessed: Jun. 23, 2010]. 

[126] “Self Organizing Wireless Mesh Networks - Microsoft Research.” Available: 

http://research.microsoft.com/en-us/projects/mesh/. [Accessed: Jun. 23, 2010]. 

  



191 

 

APPENDIX A. Formal Syntax of SSCL 
 
 
 
Syntax of SSCL 
 
Notation: 
O(x) ::= empty | x 
#(x) ::= any number of x 
P(x) ::= x #(x) 
U(x,y) ::= any order of x and y 
 
 
SSCL ::= U(O(PartnerLinkTypes), O(PartnerLinks), O(Variables), O(Activities)) 
 
PartnerLinkTypes ::= “<parnerLinkTypes>” P(PartnerLinkType) “</parnerLinkTypes>” 
 
PartnerLinkType ::= “<partnetLinkType name =” serviceInterfaceName “/>” 
 
PartnerLinks ::= “<partnerLinks>” P(PartnerLink) “</partnerLinks>” 
 
PartnerLink ::= “<partnerLink name =” serviceName “partnerLinkType =” 
serviceInterfaceName “/>” 
 
Variables ::= “<variables>” P(Variable) “</variables>” 
 
Variable::= “<variable name =” variableName “type =”xsd:TYPE “/>” 
 
Activities ::= P(basic-activities | structured-activities) 
 
Basic-activities ::= Invoke | Assign  
 
Structured-activities ::= Sequence | If | While | RepeatUntil |ForEach  
 
Invoke ::= “<invoke" invoke-attributes “>" “</invoke>" 
 
Invoke-attributes ::= U( partnerLink, operation, O(inputVariable), O(outputVariable) ) 
 
Assign ::= “<assign>" P( copy) “</assign>" 
 
Copy ::= “<copy>" From To “</copy>" (the definition of "from" and "to" are skipped here) 
 
From ::= “<from>” copyConstant | copyVariable “</from>” 
 



192 

 

To ::= “<to variable =” copyToVariable ”/>” 
 
Sequence ::= “<sequence>" Activities “</sequence>" 
 
If ::= “<if >" Condition Activities #(elseif) O(else) “</if>" 
 
Condition ::= “<condition>” Boolean | not operand | Comparison “</condition>” 
 
Boolean ::= true | false 
 
Comparison ::= leftOperand conditionSymbol rightOperand 
 
ConditionSymbol ::=  < | <= | == | >= | > | or | and 
 
While ::= “<while>" Condition Activities“</while>" 
 
RepeatUntil ::= “<repeatUntil>" Activities Condition “</repeatUntil >" 
 
forEach ::= “<forEach counterName =” counterName “>" U(StartCounterValue, 
FinalCounterValue, Scope “</forEach>" 
 
StartCounterValue ::= “<startCounterValue>” value “</startCounterValue>” 
 
FinalCounterValue ::= “<finalCounterValue>” value “</finalCounterValue>” 
 
Scope ::= “<scope>" scope-elements “</scope>" 

Scope-elements ::= U(O(partnerLink),O(variables), Activities ) ⎕ 

 

  



193 

 

APPENDIX B. MISS Workflow in SSCL 
 

 
<!-- SSCL file of the MISS system--> 

<process name="MISSSSCL"> 

<!-- ~~~~~~~     PARTNER LINK TYPE DEFINITION ~~~~~~~~~~~~~~~~~~~~~~~~~ --> 

<partnerLinkTypes> 

<partnerLinkType name="MISSSSCL"/> 

     <partnerLinkType name="PharmacyService"/> 

 <partnerLinkType name="SpeechService"/> 

 <partnerLinkType name="MCDService"/> 

 <partnerLinkType name="RFIDService"/> 

 <partnerLinkType name="MedicineSHService"/> 

 <partnerLinkType name="NotificationService"/> 

</partnerLinkTypes> 

<!-- PARTNERLINKS DEFINITIONS --> 

<partnerLinks> 

<partnerLink name="client" partnerLinkType="MISSSSCL"/> 

 <partnerLink name="pharmacyService" partnerLinkType="PharmacyService"/> 

 <partnerLink name="speechService" partnerLinkType="SpeechService"/> 

 <partnerLink name="mcdService" partnerLinkType="MCDService"/> 

 <partnerLink name="rfidService" partnerLinkType="RFIDService"/> 

 <partnerLink name="medSHService" partnerLinkType="MedicineSHService"/> 

 <partnerLink name="notificationService" partnerLinkType="NotificationService"/> 

</partnerLinks>  

<!-- VARIABLES   ====================================================  --> 

<variables> 

<variable name="input" type="xsd:string"/> 

       <variable name="output" type="xsd:string"/>   

 <variable name="rfidTag" type="xsd:string"/>   



194 

 
 <variable name="pharmacyTag" type="xsd:string"/>         

 <variable name="firstName" type="xsd:string"/> 

 <variable name="lastName" type="xsd:string"/> 

 <variable name="newPrescription" type="xsd:string"/> 

 <variable name="quantity" type="xsd:string"/> 

 <variable name="frequency" type="xsd:string"/> 

       <variable name="duration" type="xsd:string"/> 

       <variable name="options" type="xsd:string"/> 

       <variable name="comments" type="xsd:string"/>   

       <variable name="oldPrescription" type="xsd:string"/> 

       <variable name="food" type="xsd:string"/> 

       <variable name="condition" type="xsd:string"/> 

       <variable name="hasConflicts" type="xsd:boolean"/> 

       <variable name="speakMessage" type="xsd:string"/> 

       <variable name="conflictString" type="xsd:string"/> 

 <variable name="noConflictString" type="xsd:string"/> 

 <variable name="email" type="xsd:string"/> 

</variables>  

<!-- ORCHESTRATION LOGIC ============================================== --> 

<sequence name="main"> 

<invoke partnerLink="rfidService" operation="getRFIDTag" outputVariable="rfidTag"/> 

       <invoke partnerLink="pharmacyService" operation="setTag" inputVariable="rfidTag"/> 

       <invoke partnerLink="pharmacyService" operation="getFirstName" outputVariable="firstName"/> 

       <invoke partnerLink="pharmacyService" operation="getLastName" outputVariable="lastName"/> 

<invoke partnerLink="pharmacyService" operation="getMedicineName" 
outputVariable="newPrescription"/> 

       <invoke partnerLink="pharmacyService" operation="getQuantity" outputVariable="quantity"/> 

       <invoke partnerLink="pharmacyService" operation="getFrequency" outputVariable="frequency"/> 

       <invoke partnerLink="pharmacyService" operation="getDuration" outputVariable="duration"/> 



195 

 
       <invoke partnerLink="pharmacyService" operation="getOptions" outputVariable="options"/> 

       <invoke partnerLink="pharmacyService" operation="getComments" outputVariable="comments"/> 

 <assign> 

  <copy> 

   <from>Xanax</from> 

   <to variable="oldPrescription"/> 

  </copy> 

 </assign> 

 <assign> 

<copy> 

   <from>milk</from> 

   <to variable="food"/> 

  </copy> 

 </assign> 

<assign> 

 <copy> 

  <from>diabetes</from> 

  <to variable="condition"/> 

</copy> 

</assign> 

<assign> 

<copy> 

<from>Congratulations, no conflicts has been found!</from> 

<to variable="noConflictString"/> 

 </copy> 

</assign> 

<assign> 

<copy> 

<from>Warning, a conflict has been found!</from> 



196 

 
<to variable="conflictString"/> 

 </copy> 

</assign> 

<assign> 

<copy> 

  <from>josemreyes@gmail.com </from> 

<to variable="email"/> 

</copy> 

</assign> 

<invoke partnerLink="mcdService" operation="checkMedicinesConflicts" 
inputVariable="newPrescription, oldPrescription" outputVariable="hasConflicts"/> 

<invoke partnerLink="mcdService" operation="checkConditionsConflicts" 
inputVariable="newPrescription, condition" outputVariable="hasConflicts" /> 

<invoke partnerLink="mcdService" operation="checkFoodConflicts" inputVariable="newPrescription, 
food" outputVariable="hasConflicts"/>   

<if> 

<condition> 

hasConflicts 

</condition> 

        <invoke partnerLink="speechService" operation="speak" inputVariable="conflictString"/> 

<invoke partnerLink="notificationService" operation="emailandtext" inputVariable="email, 
conflictString"/>    

<else> 

<invoke partnerLink="speechService" operation="speak" inputVariable="noConflictString"/> 

<invoke partnerLink="notificationService" operation="emailandtext" inputVariable="email, 
noConflictString"/> 

</else> 

</if>   

<invoke partnerLink="medSHService" operation="setTag" inputVariable="rfidTag"/> 

<invoke partnerLink="medSHService" operation="setFirstName" inputVariable="firstName"/> 

<invoke partnerLink="medSHService" operation="setLastName" inputVariable="lastName"/> 



197 

 
<invoke partnerLink="medSHService" operation="setMedicineName" inputVariable="newPrescription"/> 

<invoke partnerLink="medSHService" operation="setQuantity" inputVariable="quantity"/> 

<invoke partnerLink="medSHService" operation="setFrequency" inputVariable="frequency"/> 

<invoke partnerLink="medSHService" operation="setDuration" inputVariable="duration"/> 

<invoke partnerLink="medSHService" operation="setOptions" inputVariable="options"/> 

<invoke partnerLink="medSHService" operation="setComments" inputVariable="comments"/> 
  

<invoke partnerLink="medSHService" operation="updateMedicinesDB"/> 

</sequence> 

</process> 

  



198 

 

APPENDIX C. MISS Model in PROMELA 
 

typedef covered_entity { 

/* This record will define the general categories of the different requirements that a covered entity must fulfill in 
order to obey the HIPAA law. 

*  Boolean values are used to represent this compliance or lack of it. 

*  Type indentifies the category to which the the requestor belongs: 1- individual; 2- covered entity; 3- 
government related  */ 

byte type;  

bool patientReqs; 

bool adminReqs; 

} 

 

typedef patient_record { 

/* Boolean values represent what data exits in the covered entity's record and what is being forwarded. */   

bool patient_data; 

bool restricted_data; 

} 

/* Definition of the channels to be used for transmiting the data */ 

chan mcdChannel = [5] of {byte, bool}; 

chan startDoctor = [5] of {bool}; 

chan doctor2pharmacy = [5] of {byte, bool}; 

chan pharmacy2sh = [5] of {byte, bool}; 

chan requestDoctor = [5] of {byte, patient_record}; 

chan requestPharmacy = [5] of {byte, patient_record}; 

chan requestSH = [5] of {byte, patient_record}; 

/* Definition of the different convered entities. Declared global to check for compliance */ 

covered_entity doctorCE; 

covered_entity pharmacyCE; 

covered_entity shCE; 



199 

 
/*Variable to track succesful/unsuccesful execution of subsystems */ 

bool doctorFinished; 

bool pharmacyFinished; 

bool shFinished; 

/*Variables for MCD */ 

byte category; 

bool response; 

/*Variables for RequestData for tracking purposes*/ 

byte requestor; 

bool patientData; 

bool restrictedData; 

/*Variables for timeliness, completeness and notifications */ 

bool timeliness; 

bool completeness; 

bool notification; 

active proctype mcd (){ 

/* Receive the prescription non-deterministically send true/false */ 

bool message; 

mcdChannel?category,message; 

if 

:: response = true; 

:: response = false; 

fi; 

mcdChannel!category, response;   

} 

active proctype doctor () { 

bool start; 

doctorFinished = false; 

doctorCE.type = 2; 



200 

 
if 

:: doctorCE.patientReqs = true 

:: doctorCE.patientReqs = false 

fi; 

if 

:: doctorCE.adminReqs = true; 

:: doctorCE.adminReqs = false; 

fi; 

patient_record prescription, rec; 

prescription.patient_data = true; 

if 

:: prescription.restricted_data = true; 

:: prescription.restricted_data = false; 

fi;   

if 

::true; 

mcdChannel!1,prescription.patient_data;   

mcdChannel?category,response; 

if 

::response -> 

if 

::notification = true; 

::notification = false; 

fi; 

::else; 

fi; 

doctor2pharmacy!1,prescription.patient_data; 

::requestDoctor?category,rec; 

requestDoctor!category,prescription; 



201 

 
fi; 

doctorFinished = true; 

} 

active proctype pharmacy () { 

bool prescriptionData; 

pharmacyCE.type = 2; 

pharmacyFinished = false; 

if 

:: pharmacyCE.patientReqs = true 

:: pharmacyCE.patientReqs = false 

fi; 

if 

:: pharmacyCE.adminReqs = true; 

:: pharmacyCE.adminReqs = false; 

fi; 

patient_record prescription, rec;   

if 

:: prescription.restricted_data = true; 

:: prescription.restricted_data = false; 

fi; 

if 

::doctor2pharmacy?category,prescriptionData; 

prescription.patient_data = prescriptionData;   

mcdChannel!2,prescription.patient_data; 

mcdChannel?category, response; 

    if 

::response -> 

if 

::notification = true; 



202 

 
::notification = false; 

fi; 

::else; 

fi; 

pharmacy2sh!2,prescription.patient_data; 

 

::requestPharmacy::requestPharmacy?category,rec; 

requestPharmacy!category,prescription; 

fi; 

pharmacyFinished = true; 

} 

 

active proctype smart_home (){ 

bool prescriptionData; 

shFinished = false; 

shCE.type = 2; 

if 

:: shCE.patientReqs = true 

:: shCE.patientReqs = false 

fi; 

if 

:: shCE.adminReqs = true; 

:: shCE.adminReqs = false; 

fi; 

patient_record prescription, rec;  

if 

:: prescription.restricted_data = true; 

:: prescription.restricted_data = false; 

fi; 



203 

 
/*Indicates the end of the MISS system model */  

endMISS: 

/* Receiving the prescription from the pharmacy's module */ 

if 

::pharmacy2sh?category,prescriptionData; 

prescription.patient_data = prescriptionData;   

mcdChannel!2,prescription.patient_data; 

mcdChannel?category, response; 

if 

::response -> 

   if 

::notification = true; 

::notification = false; 

        fi; 

     ::else; 

     fi; 

  :requestSH?category,rec; 

   requestPharmacy!category,prescription; 

  fi; 

if 

::timeliness = true; 

::timeliness = false; 

fi; 

if 

::completeness = true; 

::completeness = false; 

fi; 

if 

::notification = true; 



204 

 
::notification =false; 

fi; 

shFinished = true; 

} 

active proctype requestData(){ 

patient_record record;   

do::  

 if 

  : requestor = 1; 

:: requestor = 2; 

:: requestor = 3; 

fi; 

if 

:: requestDoctor!requestor,record ->  

requestDoctor?requestor,record; 

:: requestPharmacy!requestor,record ->  

requestPharmacy?requestor,record; 

:: requestSH!requestor,record ->  

requestSH?requestor,record; 

fi; 

patientData = record.patient_data; 

restrictedData = record.restricted_data; 

od 

} 

init { 

run mcd(); 

run doctor(); 

run pharmacy(); 

run smart_home(); 



205 

 
run  requestData(); 

} 

  



206 

 

APPENDIX D. MISS Model in oWFN 
 

{ 

net size:     |P|=50, |P_in|= 12, |P_out|= 24, |T|=13, |F|=62 

} 

 

PLACE 

  INTERNAL 

    p1, p2, p3, p4, p5, p6, p7, p8, p9, p10, p11, p12, p13, p14; 

 

  INPUT 

    in.mcdService.checkConditionsConflicts {$ MAX_OCCURRENCES = 1 $}, 

    in.mcdService.checkFoodConflicts {$ MAX_OCCURRENCES = 1 $}, 

    in.mcdService.checkMedicinesConflicts {$ MAX_OCCURRENCES = 1 $}, 

    in.pharmacyService.getComments {$ MAX_OCCURRENCES = 1 $}, 

    in.pharmacyService.getDuration {$ MAX_OCCURRENCES = 1 $}, 

    in.pharmacyService.getFirstName {$ MAX_OCCURRENCES = 1 $}, 

    in.pharmacyService.getFrequency {$ MAX_OCCURRENCES = 1 $}, 

    in.pharmacyService.getLastName {$ MAX_OCCURRENCES = 1 $}, 

    in.pharmacyService.getMedicineName {$ MAX_OCCURRENCES = 1 $}, 

    in.pharmacyService.getOptions {$ MAX_OCCURRENCES = 1 $}, 

    in.pharmacyService.getQuantity {$ MAX_OCCURRENCES = 1 $}, 

    in.rfidService.getRFIDTag {$ MAX_OCCURRENCES = 1 $}; 

 

  OUTPUT 

    out.mcdService.checkConditionsConflicts {$ MAX_OCCURRENCES = 1 $}, 

    out.mcdService.checkFoodConflicts {$ MAX_OCCURRENCES = 1 $}, 

    out.mcdService.checkMedicinesConflicts {$ MAX_OCCURRENCES = 1 $}, 

    out.medSHService.setComments {$ MAX_OCCURRENCES = 1 $}, 



207 

 
    out.medSHService.setDuration {$ MAX_OCCURRENCES = 1 $}, 

    out.medSHService.setFirstName {$ MAX_OCCURRENCES = 1 $}, 

    out.medSHService.setFrequency {$ MAX_OCCURRENCES = 1 $}, 

    out.medSHService.setLastName {$ MAX_OCCURRENCES = 1 $}, 

    out.medSHService.setMedicineName {$ MAX_OCCURRENCES = 1 $}, 

    out.medSHService.setOptions {$ MAX_OCCURRENCES = 1 $}, 

    out.medSHService.setQuantity {$ MAX_OCCURRENCES = 1 $}, 

    out.medSHService.setTag {$ MAX_OCCURRENCES = 1 $}, 

    out.medSHService.updateMedicinesDB {$ MAX_OCCURRENCES = 1 $}, 

    out.notificationService.emailandtext {$ MAX_OCCURRENCES = 2 $}, 

    out.pharmacyService.getComments {$ MAX_OCCURRENCES = 1 $}, 

    out.pharmacyService.getDuration {$ MAX_OCCURRENCES = 1 $}, 

    out.pharmacyService.getFirstName {$ MAX_OCCURRENCES = 1 $}, 

    out.pharmacyService.getFrequency {$ MAX_OCCURRENCES = 1 $}, 

    out.pharmacyService.getLastName {$ MAX_OCCURRENCES = 1 $}, 

    out.pharmacyService.getMedicineName {$ MAX_OCCURRENCES = 1 $}, 

    out.pharmacyService.getOptions {$ MAX_OCCURRENCES = 1 $}, 

    out.pharmacyService.getQuantity {$ MAX_OCCURRENCES = 1 $}, 

    out.pharmacyService.setTag {$ MAX_OCCURRENCES = 1 $}, 

    out.rfidService.getRFIDTag {$ MAX_OCCURRENCES = 1 $}; 

 

 

INITIALMARKING 

  p2: 1 {initial place}; 

 

FINALMARKING 

  p1 {final place}; 

 

TRANSITION t1 { output } 



208 

 
  CONSUME p2; 

  PRODUCE out.rfidService.getRFIDTag, p3; 

 

TRANSITION t2 { input/output } 

  CONSUME in.pharmacyService.getLastName, p5; 

  PRODUCE out.pharmacyService.getMedicineName, p6; 

 

TRANSITION t3 { input/output } 

  CONSUME in.pharmacyService.getQuantity, p7; 

  PRODUCE out.pharmacyService.getFrequency, p8; 

 

TRANSITION t4 { input/output } 

  CONSUME in.pharmacyService.getFrequency, p8; 

  PRODUCE out.pharmacyService.getDuration, p9; 

 

TRANSITION t5 { input/output } 

  CONSUME in.pharmacyService.getDuration, p9; 

  PRODUCE out.pharmacyService.getOptions, p10; 

 

TRANSITION t6 { input/output } 

  CONSUME in.pharmacyService.getOptions, p10; 

  PRODUCE out.pharmacyService.getComments, p11; 

 

TRANSITION t7 { input/output } 

  CONSUME in.pharmacyService.getComments, p11; 

  PRODUCE out.mcdService.checkMedicinesConflicts, p12; 

 

TRANSITION t8 { input/output } 

  CONSUME in.mcdService.checkMedicinesConflicts, p12; 



209 

 
  PRODUCE out.mcdService.checkConditionsConflicts, p13; 

 

TRANSITION t9 { input/output } 

  CONSUME in.pharmacyService.getMedicineName, p6; 

  PRODUCE out.pharmacyService.getQuantity, p7; 

 

TRANSITION t10 { input/output } 

  CONSUME in.mcdService.checkConditionsConflicts, p13; 

  PRODUCE out.mcdService.checkFoodConflicts, p14; 

 

TRANSITION t11 { input/output } 

  CONSUME in.mcdService.checkFoodConflicts, p14; 

  PRODUCE out.medSHService.setComments, out.medSHService.setDuration, 
out.medSHService.setFirstName, out.medSHService.setFrequency, out.medSHService.setLastName, 
out.medSHService.setMedicineName, out.medSHService.setOptions, out.medSHService.setQuantity, 
out.medSHService.setTag, out.medSHService.updateMedicinesDB, out.notificationService.emailandtext, 
p1; 

 

TRANSITION t12 { input/output } 

  CONSUME in.pharmacyService.getFirstName, p4; 

  PRODUCE out.pharmacyService.getLastName, p5; 

 

TRANSITION t13 { input/output } 

  CONSUME in.rfidService.getRFIDTag, p3; 

  PRODUCE out.pharmacyService.getFirstName, out.pharmacyService.setTag, p4; 

{ END OF FILE } 


	Iowa State University
	Digital Repository @ Iowa State University
	2010

	A framework for safe composition of heterogeneous SOA services in a pervasive computing environment with resource constraints
	Jose Manuel Reyes Alamo
	Recommended Citation



