
José M. Reyes Álamo, et al International Journal of Computer and Electronics Research [Volume 3, Issue 5, October 2014]

©http://ijcer.org e- ISSN: 2278-5795 p- ISSN: 2320-9348 Page 226

A Combined Model Checking Approach for

Services Safety

José M. Reyes Álamo
1
, Aparicio Carranza

2
, Benito Mendoza

3

1,2,3
Department of Computer Engineering Technology

New York City College of Technology

186 Jay Street

Brooklyn, NY 11201
1
jreyesalamo@citytech.cuny.edu,

2
acarranza@citytech.cuny.edu,

3
bmendoza@citytech.cuny.edu

Abstract— Pervasive computing environments such as

the smart home often rely on composite services to

provide different functionalities. These services are often

complex, handle sensitive data, and perform critical

operations. This raises several concerns especially those

related to the safety of interactions among different

services. In this paper, we differentiate services based on

their characteristics and categorize them as baseline or

extended. We propose a model checking mechanism to

ensure that services in both categories meet the safety

criteria.

Keywords: Model checking; service-oriented

architecture; open workflow nets; safety.

I. INTRODUCTION

A smart home is a house that integrates different

technologies to assist the elderly and persons with special

needs to stay home longer and live more independently [1].

As services in a smart home might perform critical operations

or manage sensitive data, it becomes critical to provide a

mechanism to verify that services and their interactions are

safe.

In this paper, we propose such mechanism by relying on

formal software analysis [2]. Our work integrates different

model checking techniques to verify whether composite

services and their interactions satisfy a safety criteria. In the

literature we found different composition frameworks that use

model checking techniques targeted especially toward web

services (WS)[3].

 Our solution follows a similar strategy however in our

work the interactions checked are among services of

heterogeneous service-oriented architectures (SOAs) instead

of only checking WS. Other works on automatic composition

frameworks for services of heterogeneous SOAs either

formally check the individual services or the resulting

composite services. Our work combines both approaches and

integrates them into a service composition framework[4]. The

safety criteria checked consist of the standard or those

properties that all services must comply with, and custom

criteria that are properties that apply only to composite

services.

The rest of the paper is organized as follows. Section 2

presents background information. Section 3 shows the

strategy and architecture to model check composite services.

Section 4 presents conclusions and future work.

II. BACKGROUND

Several model checking approaches are used in this work

for modeling and checking composite services and their

interactions. One of the model checkers used is SPIN which

is a popular model checker that uses the Process Meta

Language (PROMELA) to specify the model of a system.

PROMELA models are then checked for satisfiability with a

set of properties that are specified using Linear Temporal

Logic (LTL). For more details about the SPIN mode checker

the reader can refer to [5, 6].

This work also relies on the use of another model checker

Fiona, which is especially designed to analyze and interpret

open Workflow Nets (oWFN) [7]. The use of oWFN is

relevant as they are specially designed to model service-

oriented architectures. By using oWFN we obtain an efficient

modeling structure that reduces the number of states during

analysis when compared to other structures like canonical

Petri nets. Fiona takes as input an oWFN and checks a

standard set of properties that includes controllability,

absence of cycles, and absence of false nodes. There exist

several tools that generate oWFN from workflow

specification files [8, 9] that can be used with Fiona to check

these properties. The following paragraphsin this section

present background information on the theory of oWFN. As

oWFN are based on Petri nets, we start defining what is a

Petri net followed by the properties that make a Petri net and

oWFN. We then follow with the definition of a controller, an

automaton used to determine controllability.

Definition 1: A Petri net N consists of:

 A set P of places, represented as a circle

 A set T of transitions, represented as a rectangle

 A flow relation F, where F (T x P) U (P x T),

represented by the edges

 A marking m that is a multiset m: P  N (where

m[p], represents the number of tokens in place p). A

token is represented by a dot.

 A marking m enables a transition t if for each place p

with (p, t) ∈ F, m[p] ≥ 1. If enabled at m, firing t

yields the marking m’ with m’[p] = m[p] − 1 if (p, t)

∈ F and (t, p) ∉ F, m’[p] = m[p] + 1 if (t, p) ∈ F and

(p, t) ∉ F, and m’[p] = m[p] otherwise.

Fig. 1 shows a graphical representation of a Petri net, with

its places, transitions, and markings that may result from the

firing process.

http://ijcer.org/

José M. Reyes Álamo, et al International Journal of Computer and Electronics Research [Volume 3, Issue 5, October 2014]

©http://ijcer.org e- ISSN: 2278-5795 p- ISSN: 2320-9348 Page 227

Figure 1: Graphical representation of a Petri net.

Definition 2: A Petri net N is an open Workflow Net

(oWFN)M if:

 P is the disjoint union of the sets Pm, Pi and Po,

where:

o Pm is the set of internal places

o Pi is the set of input places with no

incoming edges

o Po is the set the output places with no

outgoing edges.

 F ∩ (Po × T) = ∅

 F ∩ (T × Pi) = ∅

 F does not contain cycles (the transitive closure of F

is irreflexive)

 M has a distinguished initial marking m0

 M has a set Ω of distinguished final markings

Fig. 2 shows a graphical representation of an oWFN with

its initial marking, input places and input transitions colored

in orange, output places and output transitions colored in

yellow, and final markings with only incoming edges colored

in gray.

Figure 2: Graphical representation of an oWFN

Definition 3. Let M be an oWFN and I ⊆ (PI∪ PO). A

controller is an automaton connected to I containing the

following elements:

 Alphabet bags(I)

 A set of states Q

 A move relation δ : Q × bags(I)  ρ(Q)

 And an initial state q0

Some of the safety properties that can be modeled and

verified with oWFN are weak soundness, soundness,

usability, controllability, absence of cycles and absence of

false nodes. Weak soundness determines the possibility to

reach an end state from each state reachable from the initial

state. A dead transition is a transition that cannot fire.

Soundness means that weak soundness holds and in addition

there are no dead transitions on the net. Usability indicates

that there exists an environment such that the oWFN of a

service composed with the oWFN of the environment yields a

weakly sound net. When a controller for the composition can

be constructed from a given partner service for an oWFN and

soundness holds this is known as controllability. The absence

of cycles means that given a partner for an oWFN the

composition does not create any cycle. Absence of false

nodes checks that given a partner for and oWFN, the input

places matches the annotations of the corresponding output

places. For our work, our safety criteria consist of checking

an oWFN for controllability, absence of cycles, and absence

of false nodes.

Several techniques can be used to check for controllability

including computing a public view (PV), computing the

interaction graph (IG) or computing the operating guideline

(OG) [10]. A PV is an abstract representation of the

operations and communication behavior of a service

describing the public service interface. An IG is a structure

that represents the controller point of view of a node where

each node contains all states reachable at certain point. An IG

can be seen as a hypothesis for the controller, representing

feasible runs of a partner service. An OG is a structure that

represents the behaviors of all possible strategies for sound

executions. It describes how a partner service should behave

instead of the actual service behavior. Computationally

speaking of these three methods, computing the PV is the

least costly but checking controllability is more expensive as

PV suffers from the state explosion problem. The PV also

reveals too much information about the service operations

which may become an issue for applications with strong

privacy requirements. The IG is relatively easy to compute

and to verify, however it also reveals too much information

about the possible states of the service. The OG is the hardest

to compute but it is easy to verify. OG does not reveal

information about the service itself as it describes how a

partner should behave instead. Researchers in oWFN

generally preferOG because even though its computation is

more expensive, this is a onetime operation. The extra

computational cost is justifiable as the verification is efficient

and also because the OG does not reveal information about

the service itself, instead it describes the partner’s expected

behavior [11].

III. MODEL CHECKING COMPOSITE SERVICES

Our goal is to check the safety of composite services and

http://ijcer.org/

José M. Reyes Álamo, et al International Journal of Computer and Electronics Research [Volume 3, Issue 5, October 2014]

©http://ijcer.org e- ISSN: 2278-5795 p- ISSN: 2320-9348 Page 228

their interactions in pervasive computing environments, using

as an example the smart home. To achieve this, we classify

services in the following categories:

 Baseline services: Services that are assumed to be part

of the initial configuration whose safety criteria needs

to be checked (e.g. notifications service).

 Extended services: Services that may be added,

started, stopped, or removed at any time (e.g. monitor

sugar levels every hour for two weeks).

For checking the safety of baseline services we use a semi-

automatic approach that models services using PROMELA,

and specifies its safety criteria using linear temporal logic

LTL. We then check for compliance with the safety criteria

using the SPIN model checker [5]. Fig. 3 presents the

architecture where services are modeled and checked. The

left-hand side shows baseline services and the right hand side

the extended services. The Baseline Services Safety

Requirements box at the top-left indicates all the

requirements for a particular baseline composite service.

Based on those requirements, the composite service is

designed. Using the design, a model of the composite service

is created using PROMELA. With these safety requirements,

the safety criteria are modeled using LTL. By providing the

PROMELA model and the LTL model, the SPIN model

checker is used to verify whether the model complies with the

specified safety criteria. If the model do not satisfies the

safety criteria, it goes back to the design for model revision.

If the model does satisfy the safety criteria, it passes to the

implementation stage and finally the service is installed into

the system.

To model baseline services we used as an example the

Medicine Information Support System (MISS), a system that

integrates the doctor, the pharmacy, and the smart home to

help the patient manage medications [12]. MISS ensures

safety by checking drug interactions among medications,

foods, and health conditions. The doctor, pharmacy, and

smart home entities of MISS are modeled using PROMELA.

We also modeled the medicine conflict database (MCD) and

a client record request. The custom safety criteria to check are

based on a set of statements from privacy laws modeled using

LTL. For this work we modeled several statements from the

Health Insurance Portability and Accountability Act (HIPAA)

in the United States [13]. The law is modeled using a

mapping of the legal language into formal language so that a

computer system can understand it [14]. These LTL formulas

are used as our custom safety criteria. In the models, a

covered entity is defined as a patient, the government, or

another entity that handles health records. The actual

checking of whether MISS complies with the HIPAA law is

performed using the SPIN model checker. The following is a

list of some of the statements taken from the privacy law and

modeled in LTL:

Statement 1: If a covered entity requests a patient’s record, it

will never receive an empty record.

LTL Formula:

#define p1 (requestor == 2)

#define q1 (patientData == true || restrictedData ==

true)

[] ((p1) -> (<> (q1)))

Explanation: The requestor variable indicates the

requestor of the data and the value 2 represents a covered

entity. The patientData and restrictedData variables

represent the two components of a patient’s record.

Statement 2: When patients request their medical record,

only the patient’s data is disclosed but never the restricted

data.

LTL Formula:

#define p5 (requestor == 1)

#define q5 (patientData == true && restrictedData

== false)

[] ((p5) -> (<> (q5)))

Explanation: The requestor variable indicates the

requestor of the data with the value 1 representing the

patient. The patientData and restrictedData variables

represent the two components of a patient’s record.

Statement 3: The doctor has to satisfy all the law

requirements for covered entities over time.

LTL Formula:

#define p6 (doctorCE.patientReqs == true &&

doctorCE.adminReqs == true)

<>[] (p6)

Explanation: The doctorCE. patientReqs indicates

whether the doctor is fulfilling the requirements for

patients. The doctorCE. adminReqs indicates whether the

doctor is fulfilling the administrative requirements.

For extended services, automatically checking the safety

criteria is challenging. Therefore we modelled these services

differently by relying on oWFN and checked the standard

safety criteria using the Fiona model checker. Fiona [9] is a

Figure 3: Model Checking Architecture for Baseline

and Extended Services.

http://ijcer.org/

José M. Reyes Álamo, et al International Journal of Computer and Electronics Research [Volume 3, Issue 5, October 2014]

©http://ijcer.org e- ISSN: 2278-5795 p- ISSN: 2320-9348 Page 229

model checking tool that analyzes the safety of interactions

among services modeled as oWFN [15]. Fiona can determine

matching services, verify partner synthesis, and perform a

check for controllability which is a minimal correctness

criterion stating the existence of a behavioral compatible

partner for the service. Fiona also provides the tools to create

an adapter rule that serves as a mediator between different

oWFN, mapping items from one oWFN into items in another.

It can also check for absence of cycles and absence of false

nodes. Fiona can produce the public view (PV), interaction

graph (IG), and operating guideline (OG) of composite

services automatically.

At the top-right of Fig. 3, the Extended Services Safety

Requirements box indicates the requirements for a particular

extended composite service. Based on these requirements the

composite service and their interactions are specified as a

workflow which is then modeled as an oWFN automatically.

The oWFN model is then passed to the Fiona model checker

and checked for controllability, absence of cycles, and

absence of false nodes. Checking for absence of cycles avoids

infinite calls to services. Checking false nodes helps to

identify those nodes that violate their own annotation. For

computing controllability, we primarily rely on the use of

OG. In our work we also provide support for using IG but we

generally do not use PV.

If the safety criteria are not satisfied, the service is not

accepted. If the safety criteria are satisfied and no errors are

found, the composition framework proceeds to automatically

generate the implementation of the service. Finally, the

composite service implementation is deployed into the system

such as the Smart Home in our example.

IV. CONCLUSIONS AND FUTURE WORK

We present a model checking approach to ensure the safety

of composite services. Services are categorized as baseline or

extended. Baseline services are assumed to be always up and

running, while extended services may come and go. We

present an architecture where safety criteria for both types of

services are checked with the appropriate tool for each case:

SPIN for baseline services and Fiona for extended services.

The model checking approach for extended services

supports heterogeneous SOAs and it is integrated with the

system allowing only implementation of services proven to

be safe. Having a safety criteria and a checking mechanism is

important as composite services in environments like a Smart

Home might perform critical operation or handle sensitive

data. Our approach and its integration into an automatic

composition framework ensures that services are

continuously fulfilling the safety criteria and that only new

composite services that meet the safety criteria are accepted.

We have developed a prototype of the system using a Smart

Home as an example, and are currently expanding it to

include more modeling scenarios and integrate other safety

policies.

REFERENCES

[1] N. Noury, G. Virone, P. Barralon, J. Ye, V. Rialle, and J.

Demongeot, “New trends in health smart homes,” in

Enterprise Networking and Computing in Healthcare

Industry, 2003. Healthcom 2003. Proceedings. 5th

International Workshop on, 2003, pp. 118–127.

[2] M. B. Dwyer, J. Hatcliff, R. Robby, C. S. Pasareanu, and W.

Visser, “Formal Software Analysis Emerging Trends in

Software Model Checking,” in Future of Software

Engineering, 2007. FOSE ’07, 2007, pp. 120–136.

[3] H. Schlingloff, A. Martens, and K. Schmidt, “Modeling and

Model Checking Web Services,” Electron. Notes Theor.

Comput. Sci., vol. 126, pp. 3–26, Mar. 2005.

[4] J. M. Reyes Álamo, H.-I. Yang, J. Wong, and C. K. Chang,

“Automatic Service Composition with Heterogeneous

Service-Oriented Architectures,” in Aging Friendly

Technology for Health and Independence, Y. Lee, Z. Z. Bien,

M. Mokhtari, J. T. Kim, M. Park, J. Kim, H. Lee, and I.

Khalil, Eds. Springer Berlin Heidelberg, 2010, pp. 9–16.

[5] G. J. Holzmann, The SPIN Model Checker: Primer and

Reference Manual. Addison-Wesley Professional, 2003.

[6] G. J. Holzmann, “The Model Checker SPIN,” Softw. Eng.,

vol. 23, no. 5, pp. 279–295, 1997.

[7] T. Murata, “Petri nets: Properties, analysis and applications,”

Proc. IEEE, vol. 77, no. 4, pp. 580, 541, 2002.

[8] N. Lohmann, “A feature-complete Petri net semantics for

WS-BPEL 2.0 and its compiler BPEL2oWFN,” WS-FM 2007

LNCS, 2007.

[9] P. Massuthe and D. Weinberg, “Fiona: A Tool to Analyze

Interacting Open Nets,” in Proceedings of the 15th German

Workshop on Algorithms and Tools for Petri Nets, AWPN

2008, Rostock, Germany, September 26–27, 2008, 2008, vol.

380, pp. 99–104.

[10] K. Schmidt, “Controllability of open workflow nets,” EMISA

LNI Bonn. KÖLLEN Verl., vol. 75, pp. 236–249, 2005.

[11] P. Massuthe, W. Reisig, and K. Schmidt, “An Operating

Guideline Approach to the SOA,” Ann. Math. Comput.

TELEINFORMATICS, vol. 1, pp. 35–43, 2005.

[12] J. M. Reyes Álamo, H.-I. Yang, J. Wong, R. Babbitt, and C.

Chang, “Support for Medication Safety and Compliance in

Smart Home Environments,” Int. J. Adv. Pervasive

Ubiquitous Comput., vol. 1, no. 3, pp. 42–60, 2009.

[13] OCR, “Summary of the HIPAA Privacy Rule.” [Online].

Available:

http://www.hhs.gov/ocr/privacy/hipaa/understanding/summar

y/. [Accessed: 07-Aug-2014].

[14] M. J. May, C. A. Gunter, and I. Lee, “Privacy APIs: Access

Control Techniques to Analyze and Verify Legal Privacy

Policies,” in Proceedings of the 19th IEEE workshop on

Computer Security Foundations, 2006, pp. 85–97.

[15] N. Lohmann, “A Feature-Complete Petri Net Semantics for

WS-BPEL 2.0,” in Web Services and Formal Methods, 2008,

pp. 77–91.

http://ijcer.org/

	PointTmp

