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Abstract— Pervasive computing environments such as 

the smart home often rely on composite services to 

provide different functionalities. These services are often 

complex, handle sensitive data, and perform critical 

operations. This raises several concerns especially those 

related to the safety of interactions among different 

services. In this paper, we differentiate services based on 

their characteristics and categorize them as baseline or 

extended. We propose a model checking mechanism to 

ensure that services in both categories meet the safety 

criteria. 
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I. INTRODUCTION 

A smart home is a house that integrates different 

technologies to assist the elderly and persons with special 

needs to stay home longer and live more independently [1]. 

As services in a smart home might perform critical operations 

or manage sensitive data, it becomes critical to provide a 

mechanism to verify that services and their interactions are 

safe. 

In this paper, we propose such mechanism by relying on 

formal software analysis [2]. Our work integrates different 

model checking techniques to verify whether composite 

services and their interactions satisfy a safety criteria. In the 

literature we found different composition frameworks that use 

model checking techniques targeted especially toward web 

services (WS)[3].  

    Our solution follows a similar strategy however in our 

work the interactions checked are among services of 

heterogeneous service-oriented architectures (SOAs) instead 

of only checking WS. Other works on automatic composition 

frameworks for services of heterogeneous SOAs either 

formally check the individual services or the resulting 

composite services. Our work combines both approaches and 

integrates them into a service composition framework[4]. The 

safety criteria checked consist of the standard or those 

properties that all services must comply with, and custom 

criteria that are properties that apply only to composite 

services. 

The rest of the paper is organized as follows. Section 2 

presents background information. Section 3 shows the 

strategy and architecture to model check composite services. 

Section 4 presents conclusions and future work.  

II. BACKGROUND 

Several model checking approaches are used in this work 

for modeling and checking composite services and their 

interactions. One of the model checkers used is SPIN which 

is a popular model checker that uses the Process Meta 

Language (PROMELA) to specify the model of a system. 

PROMELA models are then checked for satisfiability with a 

set of properties that are specified using Linear Temporal 

Logic (LTL). For more details about the SPIN mode checker 

the reader can refer to [5, 6].  

This work also relies on the use of another model checker 

Fiona, which is especially designed to analyze and interpret 

open Workflow Nets (oWFN) [7]. The use of oWFN is 

relevant as they are specially designed to model service-

oriented architectures. By using oWFN we obtain an efficient 

modeling structure that reduces the number of states during 

analysis when compared to other structures like canonical 

Petri nets. Fiona takes as input an oWFN and checks a 

standard set of properties that includes controllability, 

absence of cycles, and absence of false nodes. There exist 

several tools that generate oWFN from workflow 

specification files [8, 9] that can be used with Fiona to check 

these properties. The following paragraphsin this section 

present background information on the theory of oWFN. As 

oWFN are based on Petri nets, we start defining what is a 

Petri net followed by the properties that make a Petri net and 

oWFN. We then follow with the definition of a controller, an 

automaton used to determine controllability. 

 

Definition 1: A Petri net N consists of: 

 A set P of places, represented as a circle 

 A set T of transitions, represented as a rectangle 

 A flow relation F, where F (T x P) U (P x T), 

represented by the edges 

 A marking m that is a multiset m: P  N  (where 

m[p], represents the number of tokens in place p). A 

token is represented by a dot. 

 A marking m enables a transition t if for each place p 

with (p, t) ∈ F, m[p] ≥ 1. If enabled at m, firing t 

yields the marking m’ with m’[p] = m[p] − 1 if (p, t) 

∈ F and (t, p) ∉ F, m’[p] = m[p] + 1 if (t, p) ∈ F and 

(p, t) ∉ F, and m’[p] = m[p] otherwise. 

 

Fig. 1 shows a graphical representation of a Petri net, with 

its places, transitions, and markings that may result from the 

firing process. 
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Figure 1: Graphical representation of a Petri net. 

 

Definition 2: A Petri net N is an open Workflow Net 

(oWFN)M if: 

 P is the disjoint union of the sets Pm, Pi and Po, 

where: 

o Pm is the set of internal places 

o Pi is the set of input places with no 

incoming edges 

o Po is the set the output places with no 

outgoing edges.  

 F ∩ (Po × T) = ∅ 

 F ∩ (T × Pi ) = ∅ 

 F does not contain cycles (the transitive closure of F 

is irreflexive) 

 M has a distinguished initial marking m0 

 M has a set Ω of distinguished final markings 

 

Fig. 2 shows a graphical representation of an oWFN with 

its initial marking, input places and input transitions colored 

in orange, output places and output transitions colored in 

yellow, and final markings with only incoming edges colored 

in gray. 

 

 

 
 

Figure 2:  Graphical representation of an oWFN 

Definition 3. Let M be an oWFN and I ⊆ (PI∪ PO). A 

controller is an automaton connected to I containing the 

following elements: 

 Alphabet bags(I) 

 A set of states Q 

 A move relation δ : Q × bags(I)  ρ(Q) 

 And an initial state q0 

 

Some of the safety properties that can be modeled and 

verified with oWFN are weak soundness, soundness, 

usability, controllability, absence of cycles and absence of 

false nodes. Weak soundness determines the possibility to 

reach an end state from each state reachable from the initial 

state. A dead transition is a transition that cannot fire. 

Soundness means that weak soundness holds and in addition 

there are no dead transitions on the net. Usability indicates 

that there exists an environment such that the oWFN of a 

service composed with the oWFN of the environment yields a 

weakly sound net. When a controller for the composition can 

be constructed from a given partner service for an oWFN and 

soundness holds this is known as controllability. The absence 

of cycles means that given a partner for an oWFN the 

composition does not create any cycle. Absence of false 

nodes checks that given a partner for and oWFN, the input 

places matches the annotations of the corresponding output 

places. For our work, our safety criteria consist of checking 

an oWFN for controllability, absence of cycles, and absence 

of false nodes. 

Several techniques can be used to check for controllability 

including computing a public view (PV), computing the 

interaction graph (IG) or computing the operating guideline 

(OG) [10]. A PV is an abstract representation of the 

operations and communication behavior of a service 

describing the public service interface. An IG is a structure 

that represents the controller point of view of a node where 

each node contains all states reachable at certain point. An IG 

can be seen as a hypothesis for the controller, representing 

feasible runs of a partner service. An OG is a structure that 

represents the behaviors of all possible strategies for sound 

executions. It describes how a partner service should behave 

instead of the actual service behavior. Computationally 

speaking of these three methods, computing the PV is the 

least costly but checking controllability is more expensive as 

PV suffers from the state explosion problem. The PV also 

reveals too much information about the service operations 

which may become an issue for applications with strong 

privacy requirements. The IG is relatively easy to compute 

and to verify, however it also reveals too much information 

about the possible states of the service. The OG is the hardest 

to compute but it is easy to verify. OG does not reveal 

information about the service itself as it describes how a 

partner should behave instead. Researchers in oWFN 

generally preferOG because even though its computation is 

more expensive, this is a onetime operation. The extra 

computational cost is justifiable as the verification is efficient 

and also because the OG does not reveal information about 

the service itself, instead it describes the partner’s expected 

behavior [11]. 

III. MODEL CHECKING COMPOSITE SERVICES 

Our goal is to check the safety of composite services and 
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their interactions in pervasive computing environments, using 

as an example the smart home. To achieve this, we classify 

services in the following categories: 

 

 Baseline services: Services that are assumed to be part 

of the initial configuration whose safety criteria needs 

to be checked (e.g. notifications service). 

 

 Extended services: Services that may be added, 

started, stopped, or removed at any time (e.g. monitor 

sugar levels every hour for two weeks). 

For checking the safety of baseline services we use a semi-

automatic approach that models services using PROMELA, 

and specifies its safety criteria using linear temporal logic 

LTL. We then check for compliance with the safety criteria 

using the SPIN model checker [5]. Fig. 3 presents the 

architecture where services are modeled and checked. The 

left-hand side shows baseline services and the right hand side 

the extended services. The Baseline Services Safety 

Requirements box at the top-left indicates all the 

requirements for a particular baseline composite service. 

Based on those requirements, the composite service is 

designed. Using the design, a model of the composite service 

is created using PROMELA. With these safety requirements, 

the safety criteria are modeled using LTL. By providing the 

PROMELA model and the LTL model, the SPIN model 

checker is used to verify whether the model complies with the 

specified safety criteria. If the model do not satisfies the 

safety criteria, it goes back to the design for model revision. 

If the model does satisfy the safety criteria, it passes to the 

implementation stage and finally the service is installed into 

the system. 

 

 
 

 

 

To model baseline services we used as an example the 

Medicine Information Support System (MISS), a system that 

integrates the doctor, the pharmacy, and the smart home to 

help the patient manage medications [12]. MISS ensures 

safety by checking drug interactions among medications, 

foods, and health conditions. The doctor, pharmacy, and 

smart home entities of MISS are modeled using PROMELA. 

We also modeled the medicine conflict database (MCD) and 

a client record request. The custom safety criteria to check are 

based on a set of statements from privacy laws modeled using 

LTL. For this work we modeled several statements from the 

Health Insurance Portability and Accountability Act (HIPAA) 

in the United States [13]. The law is modeled using a 

mapping of the legal language into formal language so that a 

computer system can understand it [14]. These LTL formulas 

are used as our custom safety criteria. In the models, a 

covered entity is defined as a patient, the government, or 

another entity that handles health records. The actual 

checking of whether MISS complies with the HIPAA law is 

performed using the SPIN model checker. The following is a 

list of some of the statements taken from the privacy law and 

modeled in LTL: 

 

Statement 1: If a covered entity requests a patient’s record, it 

will never receive an empty record. 

 

LTL Formula: 

#define p1 (requestor == 2)  

#define q1 (patientData == true || restrictedData == 

true)  

[] ((p1) -> (<> (q1))) 

 

Explanation: The requestor variable indicates the 

requestor of the data and the value 2 represents a covered 

entity. The patientData and restrictedData variables 

represent the two components of a patient’s record. 

 

Statement 2: When patients request their medical record, 

only the patient’s data is disclosed but never the restricted 

data. 

 

LTL Formula: 

#define p5 (requestor == 1) 

#define q5 (patientData == true && restrictedData 

== false) 

[] ((p5) -> (<> (q5))) 

 

Explanation: The requestor variable indicates the 

requestor of the data with the value 1 representing the 

patient. The patientData and restrictedData variables 

represent the two components of a patient’s record. 

 

Statement 3: The doctor has to satisfy all the law 

requirements for covered entities over time. 

LTL Formula: 

#define p6 (doctorCE.patientReqs == true && 

doctorCE.adminReqs == true) 

<>[] (p6) 

Explanation: The doctorCE. patientReqs indicates 

whether the doctor is fulfilling the requirements for 

patients. The doctorCE. adminReqs indicates whether the 

doctor is fulfilling the administrative requirements. 

 

For extended services, automatically checking the safety 

criteria is challenging. Therefore we modelled these services 

differently by relying on oWFN and checked the standard 

safety criteria using the Fiona model checker. Fiona [9] is a 

Figure 3: Model Checking Architecture for Baseline 

and Extended Services. 
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model checking tool that analyzes the safety of interactions 

among services modeled as oWFN [15]. Fiona can determine 

matching services, verify partner synthesis, and perform a 

check for controllability which is a minimal correctness 

criterion stating the existence of a behavioral compatible 

partner for the service. Fiona also provides the tools to create 

an adapter rule that serves as a mediator between different 

oWFN, mapping items from one oWFN into items in another. 

It can also check for absence of cycles and absence of false 

nodes. Fiona can produce the public view (PV), interaction 

graph (IG), and operating guideline (OG) of composite 

services automatically. 

At the top-right of Fig. 3, the Extended Services Safety 

Requirements box indicates the requirements for a particular 

extended composite service. Based on these requirements the 

composite service and their interactions are specified as a 

workflow which is then modeled as an oWFN automatically. 

The oWFN model is then passed to the Fiona model checker 

and checked for controllability, absence of cycles, and 

absence of false nodes. Checking for absence of cycles avoids 

infinite calls to services. Checking false nodes helps to 

identify those nodes that violate their own annotation. For 

computing controllability, we primarily rely on the use of 

OG. In our work we also provide support for using IG but we 

generally do not use PV. 

If the safety criteria are not satisfied, the service is not 

accepted. If the safety criteria are satisfied and no errors are 

found, the composition framework proceeds to automatically 

generate the implementation of the service. Finally, the 

composite service implementation is deployed into the system 

such as the Smart Home in our example. 

IV. CONCLUSIONS AND FUTURE WORK 

We present a model checking approach to ensure the safety 

of composite services. Services are categorized as baseline or 

extended. Baseline services are assumed to be always up and 

running, while extended services may come and go. We 

present an architecture where safety criteria for both types of 

services are checked with the appropriate tool for each case: 

SPIN for baseline services and Fiona for extended services. 

The model checking approach for extended services 

supports heterogeneous SOAs and it is integrated with the 

system allowing only implementation of services proven to 

be safe. Having a safety criteria and a checking mechanism is 

important as composite services in environments like a Smart 

Home might perform critical operation or handle sensitive 

data. Our approach and its integration into an automatic 

composition framework ensures that services are 

continuously fulfilling the safety criteria and that only new 

composite services that meet the safety criteria are accepted. 

We have developed a prototype of the system using a Smart 

Home as an example, and are currently expanding it to 

include more modeling scenarios and integrate other safety 

policies. 
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