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Abstract This paper explores how a pluralist view can arise in a natural way out of

the day-to-day practice of modern set theory. By contrast, the widely accepted

orthodox view is that there is an ultimate universe of sets V, and it is in this universe

that mathematics takes place. From this view, the purpose of set theory is ‘‘learning

the truth about V.’’ It has become apparent, however, that the phenomenon of

independence—those questions left unresolved by the axioms—holds a central

place in the investigation. This paper introduces the notion of independence,

explores the primary tool (‘‘soundness’’) for establishing independence results, and

shows how a plurality of models arises through the investigation of this phe-

nomenon. Building on a familiar example from Euclidean geometry, a template for

independence proofs is established. Applying this template in the domain of set

theory leads to a consideration of forcing, the tool par excellence for constructing

universes of sets. Fifty years of forcing has resulted in a profusion of universes

exhibiting a wide variety of characteristics—a multiverse of set theories. Direct

study of this multiverse presents technical challenges due to its second-order nature.

Nonetheless, there are certain nice ‘‘local neighborhoods’’ of the multiverse that are

amenable to first-order analysis, and set-theoretic geology studies just such a

neighborhood, the collection of grounds of a given universe V of set theory. I will

explore some of the properties of this collection, touching on major concepts, open

questions, and recent developments.
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Introduction

This paper is about how a pluralist view can arise in a natural way out of the day-to-

day practice of modern set theory. The tools and techniques common in set theory

today act to acclimatize the practitioner to easy movement between set-theoretic

universes. As in any discipline, the day-to-day practice exerts a gentle but

undeniable influence on the philosophical viewpoint, and, while this has not (yet)

engendered a general embracement of the multiverse view of set theory, it has at the

least influenced the ‘‘working perspective.’’ To paraphrase Davis and Hersh (1981),

the average working set theorist may hold the universe view on Sunday, but she is a

multiversist during the week—or at least, she behaves so.

How has this situation arisen? Why is the work of set theory so inextricably tied

to the construction and investigation of diverse set-theoretic universes? To address

this question, I will explore an idea that has become absolutely central to set theory

over the past century, the phenomenon of independence. This notion will be

introduced and defined for the layman, and a strategy for establishing independence

results will be discussed in detail. Some time will be spent on an extended example

of an independence proof taken from a standard high school mathematical context,

Euclidean geometry. The lessons of this example will be generalized to lay the

groundwork for independence results in set theory, motivating the study of

alternative universes as a central theme. Finally, the technique of forcing will be

introduced as a primary universe-building tool, employed in nearly every set-

theoretic independence result of the past half-century. Careful examination of the

mechanics of forcing lead to set-theoretic geology, the study of a particular nice

neighborhood of the set-theoretic multiverse—a first-order realization of the

pluralistic view of set-theory.

Who is this paper for? If you are inclined towards philosophy of mathematics and

would like to see how a pluralist perspective might arise out of traditional

mathematical practice, then this paper could be for you. If you have some

mathematical fluency but know little of logic or set theory, and would like a quick-

and-dirty motivation for the work of modern set theorists, you may find just such an

(incomplete and unsatisfying) explanation here. If you are a working set theorist you

have no doubt arrived at your own conclusions on these matters—but you may find

some entertainment in exploring the story I have to tell. In the event that you are

misrepresented here, I offer my regrets.

Let’s begin with a non-pluralist perspective.

Independence

The Orthodox View of Set Theory

According to the widely accepted orthodox view of set theory, there is an ultimate

universe of sets, V, in which mathematics takes place. All mathematical objects—

natural numbers, real numbers, all the varieties of groups, topological spaces, etc.—
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exist in V. According to this view, the primary goal of set theory is ‘‘learning the

truth about V.’’

The underlying axioms of V are the ZFC axioms, the Zermelo–Fraenkel axioms

together with the axiom of choice. Set theory studies the consequences of the ZFC

axioms, and according to the orthodox view, we are thus uncovering the truth about

the mathematical universe V.

The Troubling Phenomenon of Independence

The orthodox view of set theory suggests a certain attitude when presented with new

set-theoretic ideas: while we may not know the truth of the matter at the outset, hard

work and cleverness should in principle allow us to determine it. Given a

proposition about sets, either it is true or it is false, and the role of the set theorist is

to discover which is the case. The nature of the proposition can vary widely, and is

limited only by what we can express in the language of set theory—first order logic,

with the membership relation 2 – no great limitation, as this language is highly,

even staggeringly, expressive. If we refer to such a proposition by the letter P, then

(for example) P might be the statement ‘‘every set of ordinals has a least element’’

(which is true, a basic fact about ordinals), or ‘‘there exists a set x which is a

member of itself’’ (false, as it contradicts the axiom of foundation). Faced with such

a P, a natural (and, as it happens, distressingly ineffective) approach is to bring to

bear the core process of mathematics, that of proof: we begin with the axioms, and

from them we try to prove P (or, in the case that we suspect P is false, we try to

disprove P—put another way, we try to prove the negation :P). This process

comprises a great deal of the day-to-day activity of mathematicians, and it is an

idiosyncratic and highly personal process, filled with painstaking detail work, wild

leaps of creativity, meticulous notations, hastily scrawled diagrams, long walks, and

staring again and again at past notes and dog-eared references. At the end of the day,

sometimes we have proved P, and sometimes we have proved :P, and sometimes

we are simply forced to set down our pencils and try again tomorrow. (Aside: Rohit

Parikh, one of my graduate professors and a great logician, once commented that a

reasonable strategy, in the absence of compelling reasons to either believe or

disbelieve P, is to spend odd-numbered days working on a proof of P and even-

numbered days working on a proof of :P). Most mathematicians know all too well

the experience of repeated failure, setting down the pencil, day after day, and

returning to gnaw on the problem again. It is at this point in the tale that the

phenomenon of independence raises its head, terrible and marvelous, and a change

in perspective begins to present itself.

Definition 1 (independence) A proposition P is independent of the axioms A if

P can be neither proved nor disproved from A.

A note on notation—I will use capital letters P and Q to represent mathematical

propositions (or statements, the terms can be taken interchangeably), and while I

will generally give examples in plain English it is assumed that any such proposition

could be written out in strict, symbolic, first-order logic under sufficiently dire

circumstances (in much the way that pseudocode can be translated into actual code,
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and thence into machine language). I will use the script letter A to represent a set of

axioms—where an axiom is just another mathematical proposition, and A is a

collection of such propositions that we have distinguished by taking them to be true

at the outset. If we are discussing geometry then A might consist of Euclid’s

postulates, in the case of group theory A would be the three group axioms, in set

theory A might be the ZFC axioms, and so on.

Also note that the notion of independence is not a property of P alone, but defines

a relationship between P and A—and, while we may often make utterances such as

‘‘P is independent,’’ there is always an underlying axiom system A implied.

When a proposition P is independent of your axioms, then all attempts to prove

or disprove P from A are doomed to fail. Of course, from the perspective of the

working mathematician, it is not at all clear whether a given P is independent of the

axioms. Repeated failures to prove or disprove P may add emotional weight to the

argument, but little more—it might simply be the case that proving P requires some

new approach or insight, and it is for this reason that mathematicians carry on in the

face of repeated failure. On the other hand, Gödel’s Incompleteness Theorems

showed us that the phenomenon of independence is absolutely ubiquitous, arising

naturally for any sufficiently powerful collection of axioms. (Aside: This suggests

an update to Parikh’s strategy—In the absence of compelling evidence regarding the

truth of P, spend odd-numbered days working on a proof of P, even-numbered days

working on a proof of :P, and weekends working on a proof that P is independent).

How are we to proceed? Faced with a seemingly intractable proposition P, and a

growing suspicion that P may indeed be independent of the axioms, what strategy

can we employ to establish independence rigorously? How do we go about proving

that P is independent of A?

The Soundness Property: Proving Independence by Building Models

At its heart, an independence proof must establish two negative statements:

1. That there is no proof of P from A.

2. That there is no proof of :P from A.

A (non-rigorous, but intuitively appealing) rule of thumb in mathematics: Negative

statements are hard! To show something exists, one can simply work towards

finding an example. To show something does not exist, the strategy is less clear. In

the case of independence, how can we establish that ‘‘no proof exists’’? A typical

approach to negative statements, familiar to any undergraduate student of proofs

and logic, is ‘‘assume it does exist and show a contradiction.’’ This is an attractive

and useful notion, but it is not clear how it applies in this case: Let us assume we

have a proof of P. What contradiction might arise? There does not seem to be much

to get our hands on. However, we have a tremendous tool at our disposal, that of

soundness.

Definition 2 (soundness) If there is a proof of P from A, then every structure

satisfying A must satisfy P.
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Soundness represents the most fundamental connection between syntax, the

strings of written symbols on the page that comprise our propositions and proofs,

and semantics, the meaning we ascribe to those symbols when we consider the

groups, or sets, or geometric objects they describe. The shorthand slogan for

soundness might be ‘‘if you can prove it, it must be true.’’ This is absolutely

essential to the business of mathematics—we search for proofs exactly because

we’d like to establish the truth of a given proposition. In group theory, as an

example, if we’ve proved that a property P follows from the group axioms A, then

we know that P must be true in all groups. This is soundness.

Soundness connects proofs and structures—this is nice, because the human

imagination has a great capacity for imagining new structures, and we can employ

this capacity to our advantage in establishing facts about proofs. In particular, an

equivalent formulation of soundness (take the contrapositive!) yields the following

principle, which will form the foundation of our independence proofs:

Theorem 1 If we can exhibit a structure satisfying A in which :P holds, then

there is no proof of P from A.

This gives us a concrete ‘‘hands-on’’ strategy for establishing the two negative

statements of an independence proof:

Corollary 1 If we can exhibit two structures, both satisfying A, such that P holds

in one structure and :P holds in the other, then P is independent of A.

An Extended Example: The Independence of the Parallel Postulate

Ultimately I am a set theorist, and a great deal of the current work in set theory

comes down to independence proofs—showing that some statement P about sets is

independent of the ZFC axioms. In order to make more concrete the day-to-day

business of independence proofs, I’d like to spend some time exploring an example

in a more familiar context, an area of mathematics that you may recall from your

own secondary school mathematics curriculum—that of Euclidean geometry. This

example will not constitute a rigorous proof of independence, but may at least serve

as an informal proof—a solid attempt to convince the reader, with enough content to

point the determined student in the right direction if he or she wishes to pursue the

matter. It will also (more importantly) illustrate the broad structure and many key

elements of an independence proof, and will serve as a model from which we can

discuss independence in other contexts.

Euclidean Geometry

In the United States, Euclidean geometry is generally presented at the high school

level and constitutes the student’s first (and in many cases, only) introduction to the

form and practice of formal proof. The topic is introduced via Euclid’s postulates,

the axioms that form the basis for plane geometry.

Definition 3 (The five postulates of Euclidean geometry)
Primitive (undefined) notions: point, line.
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1. A line segment can be drawn joining any two points.

2. Any line segment can be extended indefinitely in a line.

3. Given any line segment, a circle can be drawn having the segment as radius and

one endpoint as center.

4. All right angles are congruent.

5. (Parallel Postulate) Given a line and a point not on the line, there is exactly one

line passing through the point parallel to the given line.

The discussion below will focus on the fifth postulate on the list, the parallel

postulate, which has a long and contentious history. It should be noted that this

presentation is not strictly correct—the fifth postulate stated by Euclid was not the

parallel postulate, but a slightly-more-complicated, equivalent-under-certain-rea-

sonable-assumptions statement—a distinction that we will ignore in this example.

The controversy of the parallel postulate is whether it is, strictly speaking,

necessary. Perhaps it is simply a consequence of the first four postulates, in which

case it can safely be eliminated from our list of axioms (which, in the interest of

simplicity, aesthetics, and so on, we’d like to keep as compact as possible). Many,

many attempts were made to find a proof of the parallel postulate from the first four

postulates. In desperation, some attempts were even made to prove the parallel

postulate false. In the first half of the 19th century it was finally established that

these attempts were doomed to fail from the start, when the parallel postulate was

shown to be independent of the other postulates (the history is complicated, but the

first published results exhibiting models of geometry in which the parallel postulate

failed were produced independently by Bolyai and Lobachevsky around 1830). Let

us look in more detail at a proof of this result, gleaning what we can from the

methods employed.

Before we begin, there is one issue that needs to be addressed with a little care—

the meaning of the word ‘‘parallel.’’ This is a word that carries strong intuitive

associations (two parallel lines never meet, are always the same distance apart, have

the same perpendiculars, have equal corresponding angles when cut by a transverse,

and so on). In the most familiar context, the Euclidean plane, these various notions

all coincide—but as we move to other models, we will find that they need not

always be the same. For example, we may find two lines that never cross, but a

perpendicular to one may not be perpendicular to the other—is such a pair of lines

parallel? It depends on the definition. Because of this, we need to carefully define

which of these various notions we will refer to as ‘‘parallel’’—the accepted

definition is:

Definition 4 By definition, two lines are parallel if they do not intersect.

The Independence of the Parallel Postulate

We seek to establish the following theorem:

Theorem 2 The parallel postulate is independent of postulates 1–4.
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Proof We will follow the template outlined in Corollary 1. Let us take the axioms

A to consist of Euclid’s postulates 1–4, and the proposition P to be the parallel

postulate. To complete the proof, we must:

– exhibit a model of A in which P holds, and

– exhibit a model of A in which P fails.

The first model will be the familiar Euclidean plane (or just ‘‘the plane’’). I will not

describe it from first principles but will instead rely on the model in your head,

asking you to reason about this familiar object via your intuitive understanding.

Because of this, the resulting ‘‘proofs’’ will not be reduced to basic principles, but

will once again be reduced only to your intuitive notions about the plane—we will

consider a proposition ‘‘proved’’ if it seems intuitively obvious, or can be reduced to

principles that seem intuitively obvious. The second model will be somewhat more

technical, and I will describe it in more technical detail—but ultimately, the

associated proof will also rest on your geometric intuitions (though you will have to

do a little more work to apply them).

The Euclidean Plane

Lemma 1 (A model of P) The standard Euclidean plane, with points and lines

interpreted in the familiar way, satisfies Euclid’s postulates 1–4 as well as the

parallel postulate.

Proof Our intuitive understanding of the Euclidean plane (or simply ‘‘the plane,’’

that flat, boundless, two-dimensional surface that we freely represent on paper,

chalkboards, bar napkins, computer screens, and so on) is so strong that the proof of

this lemma seems entirely obvious—so much so, that it is unsatisfying. For

example, if you show me two points, it is ‘‘obvious’’ that I can draw a line segment

joining them (postulate 1)—I can picture it clearly, there on the paper! There seems

to be no foundation upon which to rest these ‘‘obvious’’ facts (akin to asking

‘‘why?’’ when presented with the basic arithmetical fact 2 þ 2 ¼ 4). The problem

here is that we have not given a rigorous definition of the Euclidean plane—we have

not provided any formal basis for our arguments. Let this pass for now, noting only

that while it can be done, the presentation adds a great deal of formal complexity

while contributing little to our intuitive understanding of the picture.

Proof of Lemma 1:

– Given any two points, we can draw a line segment between them, and so the

Euclidean plane satisfies postulate 1 (Fig. 1i).

– Given a line segment, we can extend it in both directions to obtain a line

(postulate 2, Fig. 1ii).

– Given a line segment, we can use a standard protractor to draw a circle having

the segment as a radius and one endpoint as center (postulate 3, Fig. 2i).

– Given two right angles, we can slide one over the top of the other, and we will

see that they align perfectly—that is, all right angles are congruent (postulate 4,

Fig. 2ii).
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– Given a line and a point not on the line, it is clear that we can draw a line

parallel to the first, through the point—just picture it there! Or, to be more

methodical, let us imagine any line at all passing through the point, and then

adjust the direction of that line (rotate it) until it is parallel to the first. You will

notice there is exactly one ‘‘sweet spot’’ in the rotation in which the lines

become parallel—it is this fact that demonstrates that only one such parallel line

exists through the given point (parallel postulate, Fig. 2iii).

If you find these arguments compelling, then we have completed the first half of our

independence proof—exhibiting a model in which A holds, and P is true. If you are

not yet convinced, you might consider playing around with geometric constructions

over at GeoGebra (https://www.geogebra.org/geometry), or, for the rigorous

approach, take a look at Hilbert’s classic work Foundations of Geometry Hilbert

(1999), which recasts Euclidean Geometry on a firm formal foundation. h

The Poincaré Disk

For the second half of our theorem, we will need to venture beyond the comfort of

our familiar Euclidean plane into a more exotic model of the axioms of Euclid’s

postulates 1–4. How do we get our hands on such a thing? We use a classic strategy

of mathematicians—start with a familiar structure, and see how we can modify it to

produce something new...In this case, we’ll start with the Euclidean plane (or,

properly, a subset of it—the unit disk), and will give a new interpretation of the

A

B

i.

A

B

ii.

Fig. 1 i The dashed line segment connects two given points. ii The dashed line extends the given line
segment

i. ii.

A

iii.

Fig. 2 i The dashed circle has the given segment as a radius. ii Right angles are congruent. iii The
dashed line is parallel to the given line and passes through the given point
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primitive notions of point and line. This model, the Poincaré disk, was introduced

by Eugenio Beltrami in (1868).

Definition 5 (The Poincare Disk)

– The universe consists of the unit disk (all those points on the plane whose

distance from the origin is less than 1).

– ‘‘Points’’ are points in the unit disk.

– ‘‘Lines’’ are segments of circles that intersect the boundary of the universe (the

unit circle) perpendicularly.

Notice that the most fundamentally odd aspect of the Poincaré disk is the

interpretation of ‘‘lines.’’ In coming to terms with a nonstandard definition of this

type, it helps to recognize at the start that we are doing something in direct

opposition to our intuition—as we explore this model further we will have much

discussion of lines, and we must be on guard to suppress our carefully and deeply

cultivated intuitions about this word. The importance of lines is not that they are

indefinitely long in each direction, and ‘‘straight,’’ and so on—the importance is the

relationships that hold among our primitive notions, points and lines.

In getting a feeling for this new idea of lines, it’s worth noticing that not every segment

of a circle represents a line—it must intersect the boundary perpendicularly. On the other

hand, the inherent symmetry of circles shows that any segment perpendicular to the unit

circle on one end, will also be perpendicular on the other end. A final note about lines—an

actual straight line segment passing through the center of the disk will also constitute a line

in the sense of our Poincaré disk (note it is perpendicular to the boundary on either side)—

we can reconcile this with our definition by thinking of it as a ‘‘circle of infinite radius,’’ or

we can simply add it to the definition of line as an additional possibility.

One of the best ways to build your intuition about the Poincaré disk is to simply

play around with it—and, while this is possible (but somewhat laborious) with

traditional straight-edge-and-compass, modern technology provides a number of

friendly alternatives—I recommend NonEuclid (https://www.cs.unm.edu/*joel/

NonEuclid/NonEuclid.html) for an interactive tour of the Poincaré disk, and

Hyperbolic Geometry in the Poincaré Disc (https://www.geogebra.org/m/

R5e9AggU) for a more full-featured playground environment.

Lemma 2 (A model of :P) The Poincaré disk satisfies Euclid’s postulates 1–4,

but does not satisfy the parallel postulate.

Proof The proof will utilize a combination of pictures, words, our newly-

developing intuition about the Poincaré disk, hand-waving, redirection and blatant

appeals to authority.

– Given two points, we can imagine any line passing through the first point—now

rotate that line until it also passes through the second point. Thus the Poincaré

disk satisfies postulate 1 (Fig. 3i).

– Any line segment is, of necessity, simply a part of a complete line—just extend

the ends until the boundary is reached (postulate 2, Fig. 3ii).
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– Given a line segment, we want to produce a circle with that segment as its

radius. This one is a bit of a rabbit-hole, whose investigation provokes many

more questions:

– What does a circle look like in the Poincaré disk?

– What do we mean by distance?

– What can we say about angles? and so on...

Here, the argument will depend on an extremely important (and not obvious)

property of the Poincaré disk, that it faithfully represents angles (it is a

‘‘conformal model’’). If two lines in the Poincaré disk intersect in what appears

to us to be right angles, then they do, in fact, intersect in right angles (under the

correct definition of angle interpreted in the Poincaré disk). This extends also to

circles, so if we draw a circle inside the Poincaré disk, it will also satisfy the

definition of circle interpreted within the model (‘‘the set of all points a given

distance from the center’’)—circles look like circles, although the center of the

circle (from our perspective) may not be the same as the center of the circle

(defined inside the model). Nonetheless, given any line segment inside the

Poincaré disk, we can indeed construct a circle with that segment as one of its

radii (postulate 3, Figs. 3iii, 4i).

i. ii. iii.

Fig. 3 i The dashed line segment connects two given points. ii The dashed line extends the given line
segment. Note the perpendicular intersections of the dashed line with the boundary. iii The dashed circle
has the given segment as a radius. Note that the center of the circle in the Poincaré disk is different from
the center of the circle as drawn on the plane

i. ii. iii.

Fig. 4 i Same as Fig. 3iii with additional radii shown. ii Right angles are congruent. iii Each dashed line
is parallel to the given line and passes through the given point
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– As a conformal model, the Poincaré disk faithfully represents angles—and so all

right angles are congruent (postulate 4, Fig. 4ii).

– Given a line and a point not on the line, we can easily construct many different

lines, passing through the point, and parallel to the first line (recall our definition

of parallel—they ‘‘do not meet’’). Thus in the Poincaré disk the parallel

postulate is false (Fig. 4iii). h

Taking stock, we have now exhibited models in which Euclid’s postulates 1–4

hold and

– The parallel postulate holds (the Euclidean plane).

– The parallel postulate fails (the Poincaré disk).

Thus the parallel postulate is independent of postulates 1–4. h

Multiplicity in Geometry

Where does this leave us? We have considered two very different models, both

satisfying the basic principles of geometry, but disagreeing about fundamental

geometric properties. This is fascinating and provocative!

A useful test question in this situation might be:

Question 1 Is there a compelling reason to accept one model of geometry over the

other?

Suppose the independence of the parallel postulate had been discovered in Euclid’s

time: one can imagine a prevalent argument that we should simply adopt the parallel

postulate as a new axiom—after all, it holds in the familiar Euclidean plane, the ideal

model of the universe. This perspective (analagous to the orthodox view of set theory)

holds implicit the notion that there is a ‘‘right’’ geometry, and our goal is to ferret out its

properties. The history of developments in geometry and physics, however, give this

the air of a cautionary tale, suggesting that too rigid an attachment to this ideal may be

dangerously limiting. The embracement of multiplicity in geometry has been a fruitful

one both in pure mathematics and in related sciences, and the investigation of

alternative geometries has both informed and been informed by our our deepening

understanding of the geometry of space-time. Our best understanding of the true

geometry of the space is that it is neither that of the Euclidean plane nor of the Poincaré

disk, but something entirely more complex.

From this perspective, a different natural question arises:

Question 2 Can we find still more models of geometry, with diverse and

interesting properties?
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Independence in Set Theory

Let us turn out attention back to set theory. Here we have an underlying set of

axioms, the ZFC axioms (analogous to Euclid’s postulates 1–4), and a general

(though by no means universal) agreement among mathematicians that these are the

‘‘right’’ axioms, in the sense that they correctly capture our basic intuitions about

sets. Taking these axioms as our background theory, what further facts can we prove

about sets?

An instructive example comes from the earliest days of set theory, when Cantor,

introducing the notion of cardinality, demonstrated that the size of the real numbers is

strictly larger than the size of the natural numbers. He then asked the obvious next

question, ‘‘Are there any sizes in between?’’ This question (in the case of a negative

answer, it is the continuum hypothesis), is one of the most famous in set theory. Much

as in the case of the parallel postulate, it was widely believed that the continuum

hypothesis could simply be proven from ZFC, and Cantor and many others devoted

enormous time and effort to developing such a proof. It was not until much later that

the combined efforts of Gödel and Cohen established once and for all:

Theorem 3 (Gödel, Cohen) The continuum hypothesis is independent of ZFC.

In the past century of the study of the ZFC axioms, the question of independence

has attained a place of central importance.

Example 1 (Examples of independence in set theory)

– The continuum hypothesis is independent of ZFC.

– The axiom of choice is independent of the Zermelo-Frankel axioms.

– The existence of inaccessible cardinals, measurable cardinals, and all of the

other large cardinal notions, are independent of ZFC (provided they are

consistent).

– Many, many combinatorial and other set-theoretic statements are independent of

ZFC.

Building Set-Theoretic Universes

How are independence results in set theory carried out? We can use our experience

with Euclid’s postulates as a recipe.

Recipe for building models of alternative geometries:

– Begin with a structure we know (e.g. the unit disk).

– Provide alternative definitions of the primitive notions (point, line).

– Verify that the resulting structure satisfies the axioms.

The situation in set theory is analogous. While there is only one primitive notion

(sets), it is harder to begin with an existing structure without biting our own tail, as all

of our existing structures such as the unit disk, Euclidean space, and so on are,

themselves, already realized as sets. Furthermore, given a proposed new structure, the
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prospect of verifying the axioms is daunting—the axiom system ZFC is incredibly

rich, consisting of seven axioms together with two infinite lists of axioms (‘‘axiom

schemes’’). This clearly cannot be approached piecemeal, one axiom at a time!

Nonetheless, there are several strategies for constructing new models of set

theory. Of these, one method stands out from the rest for its flexibility: the technique

of forcing. Invented in 1964 by Paul Cohen, forcing is a method for building a new

‘‘universe of sets,’’ or model of ZFC, out of an existing universe V, by selecting a

partially-ordered set P 2 V and adjoining a new ideal object called a generic set

G � P, resulting in the forcing extension V[G] (Figs. 5i, 5ii).

By controlling the properties of the generic set G, we can control the properties of

the resulting extension V[G], and forcing provides a concrete method for exerting

fine control over G via the partial order P. A typical independence result in set

theory might proceed as follows:

Starting in the universe of sets V, we build

– an extension V ½G1� satisfying the ZFC axioms, in which the continuum

hypothesis holds, and

– another extension V½G2� satisfying the ZFC axioms, in which the continuum

hypothesis fails.

Thus we demonstrate the independence of the continuum hypothesis from the ZFC

axioms.

In practice, it is often the case that one of the two parts of such a proof can be

accomplished without forcing (as was historically the case with the continuum

hypothesis, as Gödel’s constructible universe provided a model in which it was true,

well before the development of forcing). But in nearly every independence proof in

set theory, forcing is indispensable for at least one of the two parts.

A Profusion of Set Theories

Fifty years of forcing has demonstrated the surprising efficacy of the method in

producing diverse models of set theory. Each such universe of sets exhibits its own

distinct mathematical truths.

V

P

i.

P

V[G]

G

ii.

Fig. 5 i Select a partial order P. ii Adjoin the generic set G to build the extension V[G]
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Question 3 Is there a compelling reason to accept one of these models of set theory

over the others?

This question is a contentious one in modern set theory, with a number of

competing views and active research programs supporting them (an excellent

informal account of these views is given in Hamkins’ response, on MathOverflow,

to the question ‘‘What is the Current Status of the Continuum Hypothesis?’’

Hamkins (2010)). However, no model of set theory yet produced has gained

sufficient support within the community to be readily accepted as the ‘‘right model’’.

Indeed, not even a single additional axiom has gained serious consideration by the

set theory community as a natural addition to ZFC.

Let us consider a typical day in the life of a hypothetical modern set theorist—

arising in the morning, she might posit a model of set theory V with certain

properties, move to a forcing extension V[G], and then to an inner model W of

V[G] with some desirable properties of interest (established by carefully tracing the

relationships between the models V, V[G] and W). This kind of ready movement

between different universes of set theory has become familiar, even comfortable,

and fails to provoke any philosophical discomfort on the part of the set theorist. The

orthodox view of set theory seems ill-equipped to frame the apparent ease with

which we travel between universes—a new paradigm is suggested, exemplified by

the multiverse view, as introduced by Hamkins:

Definition 6 (Multiverse View Hamkins (2010), Hamkins (2012) This is the

view...that we do not have just one concept of set leading to a unique set-theoretic

universe, but rather a complex variety of set concepts leading to many different set-

theoretic worlds.

Exploring the Multiverse

If we take the multiverse view seriously, how are we to go about understanding this

profusion of set theories? An obvious approach is to reject the study of a universe of

sets, and instead direct our attention to studying the set-theoretic multiverse itself.

Taking the multiverse as our object of study presents a challenge, however—as a

structure, it is second-order in nature, consisting not simply of primitive objects

(‘‘sets’’) but also of proper classes of those objects (‘‘universes’’). Our carefully

honed tools of first-order set theory are insufficient to the task in its full generality.

Why not simply proceed with the project, second-order logic and all? Educated

as I was in the orthodoxy of first-order set theory, I find this question surprising—I

absorbed rather early the notion that ‘‘the second-order’’ was difficult, unmanage-

able and probably dangerous, largely due to the practical limitations (including, but

not limited to: the failure of compactness, of completeness, and of the Löwenheim–

Skolem theorem). I note with some interest (and self-reflective amusement) that, in

fact, the debate around second-order logic is alive and ongoing, much more so

among philosophers than mathematicians (see, e.g., Simons (1993)). Nonetheless,

we will leave that can of worms half-open for now, in light of the following

observation.
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It turns out that in certain cases an interesting local neighborhood of the

multiverse may be first-order accessible. The area of set theory known as set-

theoretic geology studies just such a local neighborhood.

Set-Theoretic Geology

Set-theoretic geology is an area of set theory introduced by Gunter Fuchs, Joel

David Hamkins, and me in Fuchs et al. (2015). Ultimately, it is about forcing, and

forcing is a ubiquitious and powerful tool for navigating about the multiverse.

However, the sense in which forcing might give rise to a ‘‘first-order accessible’’

neighborhood of the multiverse is not at all obvious—indeed, when we consider all

those universes V[G] that might be accessible from our own via forcing, we are

already transcending our given domain of discourse (as the set G is not in our

universe V) and thus transcending the first-order descriptive power at our disposal.

To understand the first-order nature of the geology project requires a different

approach. At its heart, forcing is a method that allows us to move from a model

V (the ground model) to a larger model V[G] (the forcing extension). However, a

change in perspective allows us to use forcing to look inward.

Definition 7 Fuchs et al. (2015) A class W � V is a ground of V, if W is a

transitive class model of ZFC and V is obtained by set forcing over W, that is, if

there is some forcing notion P 2 W and a W-generic filter G � P such that

V ¼ W ½G�.

For a given model V, the collection of all its grounds forms the context for set-

theoretic geology. This second-order collection, consisting of many proper classes

W, nonetheless admits a first-order definition. Set-theoretic geology provides first-

order access to the multiverse of grounds. In the following section I will give a brief

tour of this neighborhood, point out some of the interesting features, and pose a

number of questions.

Geology is First-Order

In set-theory, our objects are sets. The idea that a collection of sets is, again, a set, is

a natural and attractive notion—but as Russell showed us with his famous paradox,

pursuing this notion to its logical conclusion (‘‘unrestricted comprehension’’) leads

us to contradiction. Thus we have what amounts to a size restriction on sets—

collections of sets that are simply too big are disallowed. The universe V is one such

collection, the collection of all ordinals is another, and so on. While these

collections are not part of our formal universe of discourse—we cannot reference

them directly, our quantifiers do not range over them, etc.—we can and do refer to

them informally as proper classes.

We also have a more formal method of accessing many proper classes, by using

the expressive power of first-order logic. For any first order formula /ðxÞ with a free

variable, the collection fa 2 V j /ðaÞg is a definable class. Since many different

interesting properties can be expressed by first-order formulas, we can (on a case-
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by-case basis) work with many interesting proper classes, all without leaving the

realm of first-order logic.

Example 2 (Some examples of definable classes)

– The universe V, defined by /ðxÞ : x ¼ x

– The class of all of sets that contain the empty set as a member, /ðxÞ : ; 2 x

– The class of all ordinals (here the definition is a little trickier, and there are

several equivalent versions—one is /ðxÞ : x is a transitive set of transitive sets)

– The class of all groups (or fields, or rings, etc)

– The class of all models of the parallel postulate.

In some cases, the first-order definition comes readily to mind—in others, it does

not seem so obvious. In some cases, we may have a class in mind but, absent a

definition, we do not know whether we can address it in a first-order fashion. In the

case of set-theoretic geology the classes we are interested in are the grounds of V,

and the first-order definability of these classes was not established until some fifty

years after forcing was invented.

Theorem 4 ( Laver (2007), independently Woodin (2004, 2011)) If W is a ground

of V then W is a first-order definable class in V (using a parameter from W).

The technical details of the proof are beyond the scope of this article, but a few

comments about it are in order. First, the proof actually provides a stronger result

than is stated in the theorem. To understand the importance of this, it’s worth

considering the problem we are facing—we want to do more than reference a

particular ground, we are interested in the study of the collection of all the grounds.

Knowing only that each ground was first-order definable, we would be able to

express statements about particular grounds, such as ‘‘the intersection of the

grounds W1 and W2 is equal to the ground W3’’ (by simply replacing each Wi with

the appropriate defining formula). However, this would not allow us to treat the

collection of grounds in a first-order fashion, making statements that (for example)

quantified across grounds, such as ‘‘there exists a ground W in which the continuum

hypothesis holds’’—exactly the kind of question we want to address in set-theoretic

geology.

Luckily, the proof of the theorem does more than establish first-order definability

of grounds—a specific first-order formula /ðx; rÞ is given in the proof, where r is a

set parameter taken from W, and so (working in V) we have W ¼ fa 2 V j /ða; rÞg.

The beauty and power of this definition is that it is uniform—the same first-order

formula will work to define any ground W, with the distinction appearing only in our

choice of parameter r. Thus, for two different grounds W1 and W2, we can select

parameters r1 2 W1 and r2 2 W2 such that W1 is defined by /ðx; r1Þ and W2 is

defined by /ðx; r2Þ. The uniform nature of the definition allows us to effectively

quantify over grounds, by simply quantifying over the parameters r (which, as the

parameters are sets, presents no first-order challenges). Careful examination of the

formula /ðx; rÞ shows that we can associate to each parameter r a ground Wr, and
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that every ground has a corresponding parameter—this is captured in the following

theorem, which establishes the formal foundations for set-theoretic geology.

Theorem 5 Fuchs et al. (2015) There is a parameterized family fWr j r 2 V g of

classes such that

1. Every Wr is a ground of V, and r 2 Wr.

2. Every ground of V is Wr for some r.

3. The classes Wr are uniformly definable in the sense that f hr; xi j x 2 Wr g is

first order definable without parameters.

4. The relation ‘‘V ¼ Wr½G�, where G � P 2 Wr is Wr-generic’’ is first-order

expressible in V in the arguments ðr;G;PÞ.

A Brief Tour of Geology

I think of Theorem 5 as a tool that situates set-theoretic geology concretely in the

realm of first-order set theory. What can we do with this tool? What are the

questions we can ask, the objects we can construct, the consequences we can

explore? Let’s consider some of the possibilities.

If we are interested in the collection of grounds of V, a good place to start is the

simplest case possible—what if there are no grounds of V? This is the question that I

considered in my dissertation work under Joel David Hamkins, Reitz (2006),

focusing on the ground axiom (the precursor to set-theoretic geology).

Definition 8 (Hamkins, R.) The ground axiom is the assertion that the universe

V is not obtained by set forcing over any strictly smaller ground model.

It is worth mentioning here one of the philosophical notions that hovers in the

background of the geology project, the search for canonical inner models. The

notion of peering inside a model of set theory, looking for some essential core

structure, is a theme that goes back all the way to Gödel’s constructible universe and

is actively pursued today. The method of forcing seems to run counter to this inward

pull, littering the landscape of our model V with highly non-canonical generic

objects G. We can imagine, then, that the ground axiom is a natural property to

expect of a canonical inner model—at the least, such a model should not have arisen

through forcing over some smaller model (else why not simply take the smaller

model?). Taking it one step further, we can hope that the ground axiom might be a

signal that we are in such a minimal, essential model. Unfortunately, this hope is

dashed by the following theorem:

Theorem 6 (Reitz (2007, 2006)) Every model V of set theory has an extension V

which satisfies the ground axiom.

A note about the proof: it is clear that V cannot be constructed from V by set

forcing (else it would have a ground model, V itself, and thus the ground axiom

would not hold). Instead, we construct V using the more powerful (but less

tractable) idea of class forcing, in which our partial order is a proper class.
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If the ground axiom fails, then set-theoretic geology has a nontrivial domain of

discourse and we can begin to ask questions about the structure of the grounds. For

example, we can ask what happens if we take ‘‘two steps down:’’

Question 4 Is a ground of a ground also a ground?

The answer is yes, and the proof is provided by the long-established theory of

iterated forcing, a very beautiful notion which shows us how to combine two steps

of forcing into a single step.

More generally, what if we take two steps down but ‘‘in different directions,’’—

that is, what if we take two grounds and intersect them. Do we get a ground? Or,

easing the restriction a bit, can we find a ground contained in their intersection? We

refer to this property as downward directedness.

Question 5 Reitz (2006) Are the grounds downward directed? That is, for any

grounds Wr and Ws does there exist a ground Wt � Wr \ Ws?

There is a stronger notion that allows for intersections of more grounds, that of

downward set-directedness.

Question 6 Fuchs et al. (2015) Are the grounds downward set-directed? That is,

for any set of parameters A does there exist a ground Wt �
T

r2A Wr?

These are fundamental questions about the structure of grounds, with wide-

ranging implications. They remained stubbornly open despite our best efforts to

resolve them (until very recently—see the next section).

Note that all grounds have a great many elements in common—for example, the

ordinals are in every ground, as are all of the constructible sets. How far does this

go? What can we say about the common elements of all the grounds? These

questions give rise to the notion of the mantle, one of the primary objects of interest

in set-theoretic geology.

Definition 9 Fuchs et al. (2015) The mantle M of a model of set theory is the

intersection of all of its grounds.

The mantle is a first-order definable class, as M ¼ fx j 8r x 2 Wrg. It is transitive

and contains all ordinals and all constructible sets. What more can we say about it?

It is, again, a natural candidate for a canonical inner model, and so we might expect

it to have some nice structural or combinatorial properties. The following theorem

contradicts this expectation entirely, showing that literally anything that can occur

in a model of ZFC, can also occur in the mantle.

Theorem 7 Fuchs et al. (2015) Every model of ZFC is the mantle of another

model—that is, every model V has an extension V in which the mantle is exactly V,

so MV ¼ V .

This theorem shows what is possible in the mantle—but can we say anything

about what must necessarily hold there? Is the mantle, for example, necessarily a

model of ZFC? Interestingly, the answer seems to be tied up in questions of

directedness.

306 J. Indian Counc. Philos. Res. (2017) 34:289–308

123

Author's personal copy



Theorem 8 Fuchs et al. (2015)

1. If the grounds are downward directed, then the mantle is a model of ZF.

2. If the grounds are downward set-directed, then the mantle is a model of ZFC.

Recent Developments in Geology

In Fall 2015 the set theorist Toshimichi Usuba announced a result that resolves a

great many of the fundamental open questions in set-theoretic geology. While the

result is not yet published, it has generated a great deal of interest in the set theory

community and has featured in conference presentations by Usuba and others,

notably Hamkins, in a number of international forums.

Theorem 9 (Usuba) The grounds are downward set-directed.

This implies, among many other things, that the mantle is a model of ZFC, that

the mantle is equal to the generic mantle, that the mantle is equal to the intersection

of the generic multiverse of V, and that every model in the generic multiverse is no

more than two steps away from V itself (an extension of a ground of V).

Conclusion

Set-theoretic geology is of interest because of what it reveals about the relationships

between models in a local neighborhood of the set-theoretic multiverse, shedding

light onto the structure and properties of the technique of forcing. It also presents an

appealing template for first-order exploration of second-order phenomena—a loose

extension of the geology project might be the investigation of other interesting

neighborhoods of the multiverse that are amenable to first-order analysis. A more

ambitious extension is the direct study of the multiverse as a whole, building the

tools necessary for the task of uncovering the interrelationships between wildly

disparate models. Whatever the success of such a program, the multitude of

universes revealed by the phenomenon of independence presents a rich and complex

landscape, ripe for ongoing exploration.
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