
Recursion Techniques for JavaScript
G James Mitchell

Programmers use a variety of techniques to apply sophisticated
solutions through specific computer languages. Different
techniques have affordances and constraints that determine which
is best for individual problems or solutions. A common technique
used among programmers is recursive programming, which helps to
organize code into steps that addresses pieces of a problem.
This assists in creating an algorithm that works through a
dataset and produces desired results. Here is how it works.

What is recursion in javascript?
Recursion refers to a function that iterates an operation until
a condition is met, resulting in a loop¹. For recursive
programming to run effectively, and not produce an infinite
loop, two elements are required². The recursive case and the
base. The base is the condition that terminates the recursion,
once reached. The recursive case is the function that is
recurring.

For a simple example of this technique we can create a function
that counts to ten.

Ex. 1

To further extrapolate the meaning of this code we’ll break down
each line.

1. Set the beginning value of our variable before starting the
recursion process.

2. Label our function and identify its value.
3. Identify the condition of our base.
4. Command a return to print ‘counted to ten’ upon reaching the

base.
5. Identify the recursive case when the base is not reached.
6. Command a return to print of each step during the recursive

process.
7. Command the function to call itself adding 1, for the loop

to progress.

When is recursive programming used?
The recursion technique is highly effective at traversing large
data sets that automate calling steps, figures, and objects in
functions like binary search and quicksort¹. Recursion is not
isolated to one language and is widely used to tackle large data
stacks. This makes it easy to recognize and read, which is
important when building upon existing code.

By organizing data into calculated structures, programming
recursive loops into algorithms provides solutions and
accessibility to complex problems. This can be done by segmenting
large problems into numerous smaller ones, then solving each with
the recursive technique. The algorithm as a whole will necessary
calculations to quickly deliver solutions, directions, or
figures.

Having the flexibility to apply multiple recursive equations and
functions to varying pieces of data within the same algorithm
consolidates programming efforts, offering cleaner code. When
programming for large data sets, it is important to have code
noted and organized, so that adjustments can be made and improved
upon.

Principles of recursive programming
There are a few principles you should understand to implement
recursive techniques. As an algorithm takes shape, and loops are
inserted to navigate data structures, complexity increases within
the application. These principles should guide you to quickly
locate common errors.

● Base Syntax and Logic
We already know step 3, the base, is key at delivering proper
recursive programming. If your function produces errors, check
the base for correct syntax and logic.

● Always Add a Step
Step 7 is imperative to move the function toward the condition.
If your function is not working, check that your return command
leads the result to exact termination.

● Null is Your Enemy
As your algorithm includes more diverse functions it is
important to remember that a function with a null value will
remove that function from performing, resulting in an error. If
you are getting an error check areas where Null may be used.

Why recursion in javascript?
As mentioned, recursion is effective when applying a function to
a large set of data. Rather than programming a function for each
operation, recursion can be applied to calculations that include
specific variables that produce desired results. This is the
process of using computation to automate solutions. With

automation we expedite answers and accessibility to valuable
information.

This technique can also be used to verify itself against other
pieces of information, and alert users if parameters are
breached. This ensures algorithms avoid corruption and deviation,
maintaining accuracy.

Applying Recursion in JavaScript

Affordances
When using logic to solve problems, we are navigating a binary
tree of information. An answer is either true or false. This
principle is the essence of recursion, and can be strategically
applied to produce creative solutions. The next example
demonstrates how to apply multiple recursions in the same
function to navigate this data set.

Ex. 2

By breaking down the problem into smaller steps we can use one
small adjustment to build momentum when combining both variables.

1. Set your strategic base for var C.
2. Within that recursion, set the base of the variable you’ll

be working with.
3. Within the next recursion use an operation to make your

small adjustment.
4. Finally, command your recursive case of your two variables.

Constraints
This technique does have limitations, however. Should the
recursive function become too large, the application could begin
having problems when responding. The point of recursion is to
break the large problem into smaller ones. Just remember each
technique has its own affordances and constraints. Where one may
not work, another may.

Footnotes

¹ https://www.javascripttutorial.net/javascript-recursive-function/
² https://github.com/JS-Challenges/recursion-prompts

https://www.javascripttutorial.net/javascript-recursive-function/
https://github.com/JS-Challenges/recursion-prompts

