
Monte Carlo
PHYS 2601

Sampling PDFs

• Historically one developed theories of statistics using assumptions about the
pdf, usually that it was normal, and math.

• Nowadays, thanks to fast computers have a different way of doing things. We
can just generate as many samples of the pdf as we want and then run any
statistic we want on them.

• This relies on the ability of computers to generate pseudorandom numbers.
Note these are pseudo and not truly random numbers. The most important
difference being one can generate the same sequence of psuedorandom
numbers in the exact same order over and over again.

• The general name for techniques based on random numbers is called Monte
Carlo.

Generating Psueodrandom Numbers
In numpy

• In numpy one can create psuedorandom numbers by first creating an
instance of a random number generator.

rng = np.random.default_rng(12345)

• The number passed is called the seed and starts the sequence. Calling a new
generator with the same seed will start the same exact sequence. You can
pass no number and should have no number here if you are done debugging
your code.

• This generator can then be used to generate random numbers from any of the
common probability density distributions.

Generating Psueodrandom Numbers
In numpy

• Then to get a random number from the uniform distribution between 0,1

x = rng.random()

• To get a random number from the normal distribution

x = rng.normal()

• To get a random integer between 8 and 32

x = rng.integer(low=8, high=32)

• One can also call from any of the pdfs we have discussed. Importantly, since this is
numpy one can use the size=N keyword to get N random numbers

x = rng.random(size=1000)

Sampling

• Pseudorandom number generators allow
us to sample our pdfs. Thus we can
generate a sample of any size we want
in fractions of a second.

• This means we can create samples of a
distribution just like we would get from
taking experimental data. The advantage
is we can exactly know the true pdf
generating the data.

Generating Functions

• In statistics a generating function is the function that creates some data,
theoretically. A generating function completely specifies the probability of
getting certain values for our data.

• We can then analyze our data, knowing the true generating function, and
determine if our analysis can correctly measure attributes of the generating
function.

• Of course, any data would just be one random realization of the generating
function, so one would want to generate many realizations to say what might
happen 90%, 99% , etc. of the time.

Linear Model

• Let’s consider an example of a generating function. Let us assume there is
linear function that we can use to determine f(x) given an x

• Let us also assume that we can know x exactly but that when we measure f(x)
we have to add some Gaussian noise ε with standard deviation σ. Then the
measured y values will be given by

• We can also assume that each measurement is independent, so the values of
x and ε have no dependence on previous measurements.

<latexit sha1_base64="fwzwxt8WnlDm/u5J64HNWtOPlT8=">AAAB9HicdVDLSsNAFJ34rPVVdelmsAgVISS10WYhFN24rGAf0IYymU7aoTNJnJmUltLvcONCEbd+jDv/xklbQUUPXDiccy/33uPHjEplWR/G0vLK6tp6ZiO7ubW9s5vb26/LKBGY1HDEItH0kSSMhqSmqGKkGQuCuM9Iwx9cp35jSISkUXinxjHxOOqFNKAYKS15QWF0Ai8hH8FT6Hdyect0y45TKkLLtCy35Jxp4rquXbahrZUUebBAtZN7b3cjnHASKsyQlC3bipU3QUJRzMg0204kiREeoB5paRoiTqQ3mR09hcda6cIgErpCBWfq94kJ4lKOua87OVJ9+dtLxb+8VqKCsjehYZwoEuL5oiBhUEUwTQB2qSBYsbEmCAuqb4W4jwTCSueU1SF8fQr/J/WiaZ+bzm0pX7laxJEBh+AIFIANLkAF3IAqqAEM7sEDeALPxtB4NF6M13nrkrGYOQA/YLx9AqJFkL8=</latexit>

f(x) = mx+ b

<latexit sha1_base64="64BHHHXHnIly3tIAQ4+NEfKGeiM=">AAAB/HicdZDLSsNAFIYn9Vbrrdqlm8EiVISQ1EabhVB047KCvUAbymQ6aYdOLsxMxBDqq7hxoYhbH8Sdb+OkraCiPwz8fOcczpnfjRgV0jA+tNzS8srqWn69sLG5tb1T3N1rizDmmLRwyELedZEgjAakJalkpBtxgnyXkY47uczqnVvCBQ2DG5lExPHRKKAexUgqNCiWEngOvcrdETyGfRIJyjJaNnS7blm1KjR0w7Br1okytm2bdROaimQqg4Wag+J7fxji2CeBxAwJ0TONSDop4pJiRqaFfixIhPAEjUhP2QD5RDjp7PgpPFRkCL2QqxdIOKPfJ1LkC5H4rur0kRyL37UM/lXrxdKrOykNoliSAM8XeTGDMoRZEnBIOcGSJcogzKm6FeIx4ghLlVdBhfD1U/i/aVd181S3rmvlxsUijjzYBwegAkxwBhrgCjRBC2CQgAfwBJ61e+1Re9Fe5605bTFTAj+kvX0C6HiTtA==</latexit>

y = f(x) + ✏

Linear Model

• In code

rng = np.random.default_rng()

x = rng.uniform(size=50)*2*np.pi

y = 3*x+2 + rng.normal(scale=0.2, size=50)

plt.scatter(x,y)

