

Draw the free body diagram of the truss.

Take moment about joint C.

$$\sum M_c = 0$$
 $A_x \times 27 - 12 \times 12 - 12 \times 24 - 6 \times 36 = 0$
 $A_x = 24 \text{ k}$

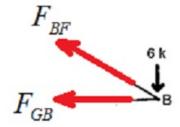
Consider the equilibrium of forces along the horizontal.

$$\sum F_x = 0$$

$$C_x + A_x = 0$$

$$C_x = -24 \text{ k}$$

Consider the equilibrium of forces along the vertical.


$$\sum F_y = 0$$

$$C_y - 6 - 12 - 12 - 6 = 0$$

$$C_y - 6 - 12 - 12 - 6 = 0$$

$$C_y = 36 \text{ k}$$

Consider the joint B.

Calculate the angle between the members BF and GB.

$$\tan \theta = \frac{27}{36}$$

$$\theta = 36.87$$

Consider the equilibrium of forces along the vertical.

$$\sum F_y = 0$$

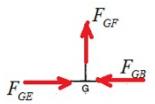
$$6 - F_{BF} \sin \theta = 0$$

$$6 - F_{BF} \sin 36.87^\circ = 0$$

$$F_{BF} = 10 \text{ k (Tension)}$$

Consider the equilibrium of forces along the horizontal.

$$\sum F_x = 0$$


$$F_{GB} + F_{EF} \cos \theta = 0$$

$$F_{GB} + 10 \times \cos 36.87^\circ = 0$$

$$F_{GB} = -8 \text{ k}$$

$$F_{GB} = 8 \text{ k (Compression)}$$

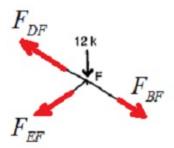
Consider the joint G.

Consider the equilibrium of forces along the vertical.

$$\sum F_y = 0$$

$$F_{GF} = 0 \text{ (Zero force member)}$$

Consider the equilibrium of forces along the horizontal.


$$\sum F_x = 0$$

$$F_{GB} - F_{GE} = 0$$

$$F_{GE} = F_{GB}$$

$$F_{GE} = 8 \text{ k (Compression)}$$

Consider the joint F.

Consider the equilibrium of forces along the vertical.

$$\sum F_{y} = 0$$

$$12 + F_{EF} \sin \theta + F_{EF} \sin \theta - F_{DF} \sin \theta = 0$$

$$12 + (F_{EF} + F_{EF} - F_{DF}) \sin \theta = 0$$

$$12 + (F_{EF} + 10 - F_{DF}) \sin 36.87^{\circ} = 0$$

$$F_{EF} + 10 - F_{DF} = -20$$

$$F_{EF} - F_{DF} = -30$$
.....(1)

Consider the equilibrium of forces along the horizontal.

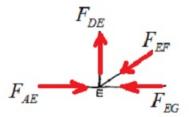
$$\sum F_{x} = 0$$

$$F_{EF} \cos \theta + F_{DF} \cos \theta - F_{EF} \cos \theta = 0$$

$$(F_{EF} + F_{DF} - F_{EF}) \cos \theta = 0$$

$$F_{EF} + F_{DF} - F_{EF} = 0$$

$$F_{EF} + F_{DF} - F_{EF} = 0$$


$$F_{EF} + F_{DF} = 10$$

$$(2)$$

Add equation (1) and (2)

$$(F_{EF} - F_{DF}) + (F_{EF} + F_{DF}) = -30 + 10$$

 $2F_{EF} = -20$
 $F_{EF} = -10 \text{ k}$
 $F_{EF} = 10 \text{ k}$ (Compression)

Consider the joint E.

Consider the equilibrium of forces along the vertical.

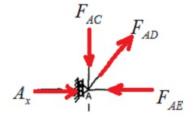
$$\sum F_y = 0$$

$$F_{DE} - F_{EF} \sin \theta = 0$$

$$F_{DE} - 10 \sin 36.87^\circ = 0$$

$$F_{DE} = 6 \text{ k (Tension)}$$

Consider the equilibrium of forces along the horizontal.


$$\sum F_x = 0$$

$$F_{AE} - F_{EG} - F_{EF} \cos \theta = 0$$

$$F_{AE} - 8 - 10 \times \cos 36.87^\circ = 0$$

$$F_{AE} = 16 \text{ k (Compression)}$$

Consider the joint A.

Consider the equilibrium of forces along the horizontal.

$$\sum F_{x} = 0$$

$$A_{x} + F_{AD} \cos \theta - F_{AE} = 0$$

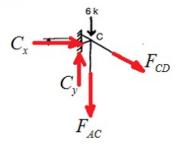
$$24 + F_{AD} \cos 36.87^{\circ} - 16 = 0$$

$$F_{AD} = -10$$

$$F_{AD} = 10 \text{ k (Compression)}$$

Consider the equilibrium of forces along the vertical.

$$\sum F_y = 0$$


$$F_{AC} - F_{AD} \sin \theta = 0$$

$$F_{AC} - (-10) \sin 36.87^\circ = 0$$

$$F_{AC} = -6 \text{ k}$$

$$F_{AC} = 6 \text{ k (Tension)}$$

Consider the joint C.

