In Exercise 9 find the Steady State current in the circuit described by the equation.
q.

$$
\begin{aligned}
& \frac{1}{10} Q^{\prime \prime}+6 Q^{\prime}+250 Q=10 \cos 100 t+30 \sin 100 t \\
& \frac{r^{2}}{10}+6 r+250=0 \\
& r^{2}+60 r+2,500=0 \\
& (r+30)^{2}+1,600=0 \\
& r=-30 \pm 40 i \\
& Q_{c}(t)=e^{-30 t}\left(c, \cos 40 t+c_{2} \sin 40 t\right) \\
& Q_{p}(t)=(a \cos 100 t+b \sin 100 t) \\
& Q_{p}^{\prime}(t)=100(-a \sin 100 t+b \cos 100 t) \\
& Q^{\prime \prime} p(t)=-10,000(a \cos 100 t+b \sin 100 t)
\end{aligned}
$$

$$
\begin{aligned}
& -1,000(a \cos 100 t+b \sin 100 t)+600(-a \sin 100 t+b \cos 100 t) \\
& \quad+250(a \cos 100 t+b \sin 100 t)=10 \cos 100 t+30 \sin 100 t \\
& -750 a+600 b=10 \\
& -600 a-750 b=30
\end{aligned}
$$

Solve for a in $-750 a+600 b=10$
subtract boob from both sides of the equation

$$
\begin{aligned}
& -750 a=10-600 b \\
& -600 a-750 b=30
\end{aligned}
$$

Divide each term in
$-750 a=10-600 b$ by -750 and simplify

$$
\begin{aligned}
& a=-\frac{1}{75}+\frac{46}{5} \\
& -600 a-750 b=30
\end{aligned}
$$

Replace all occountences of a in

$$
\begin{aligned}
& -600 a-750 b=30 \text { with }-\frac{1}{75}+\frac{4 b}{5} \\
& -600\left(-\frac{1}{75}+\frac{4 b}{5}\right)-750 b=30
\end{aligned}
$$

Simplify the left side

$$
8-1230 b=30
$$

Solve for b in $8-1230 b=30$

Move all term not containing b to the
right side of the equation.

$$
-1230 b=22
$$

Divide each term in $-12306=22$ by
-1230 and simplify

$$
b=-\frac{11}{615}
$$

Replace all occurrences of b with $-\frac{11}{615}$ in each equation

$$
\begin{aligned}
& a=-\frac{1}{75}+\frac{46}{5} \text { with }-\frac{11}{615} \\
& a=-\frac{1}{75}+\frac{4\left(-\frac{11}{615}\right)}{5} \\
& a=-\frac{17}{615} \\
& a=-\frac{17}{615}, b=-\frac{11}{615}
\end{aligned}
$$

Particular Solution

$$
Q_{p}(t)=-\frac{1}{615}(17 \cos 100 t+11 \sin 100 t)
$$

To find the Steady State current we have to find the derivative of particular Solution

$$
Q_{p}(t)=-\frac{1}{615}(17 \cos 100 t+11 \sin 100 t)
$$

Steady State Current

$$
\begin{aligned}
Q_{p}^{\prime}(t) & =\frac{1}{615}(1,700 \sin 100 t-1,100 \cos 100 t) \\
& =\frac{340}{123} \sin 100 t-\frac{220}{123} \cos 100 t
\end{aligned}
$$

