Solve the IVP $y^{\prime}=\frac{1-2 x}{y} ; \quad y(1)=-2$. Find the interval of validity (domain).
Separating variables and integrating, we get:
$\int y d y=\int 1-2 x d x$ or $y^{2} / 2=x-x^{2}+k$
$y^{2}=2 x-2 x^{2}+c$ or $y= \pm \sqrt{2 x-2 x^{2}+c}$
To find c , we substitute in the IV:
$(-2)^{2}=2(1)-2(1)^{2}+c$ or $c=4$
We need to decide which branch to take. To have a negative initial value, we need the lower branch: $y=-\sqrt{2 x-2 x^{2}+4}$
To find the interval of validity, we need the radicand to be nonnegative:
$2 x-2 x^{2}+4 \geq 0$
Multiplying by $\mathbf{- 1}$, dividing by $\mathbf{2}$ and factoring:
$x^{2}-x-2=(x+1)(x-2) \leq 0$
This is parabola (up) with zeros at $\mathbf{- 1}$ and $\mathbf{2}$ so $[-1,2]$ is the domain. However, at the endpoints $\boldsymbol{y}=\mathbf{0}$ and we will have vertical tangent lines, so we exclude them. Thus the interval of validity is $(\mathbf{- 1 , 2})$. Not part of the quiz, but as confirmation of our analysis, we look at the slope field. Note in particular all the settings:

