$\mathrm{A}(\mathrm{n})$ differential equation of the form $\frac{d y}{d x}=f(x, y)$ is of order _one. It may be linear or may be nonlinear. If it can be written in the form $M(x) d x+N(y) d y=0$, then it is said to be \qquad separable .

For $\frac{d y}{d x}=\frac{3 x^{2}+4 x+2}{2(y-1)}, y^{2}-2 y-\left(x^{3}+2 x^{2}+2 x+C\right)=0$ is a(n) \quad implicit__ solution. If we solve for y, we get 2 possible solutions $y=1 \pm \sqrt{x^{3}+2 x^{2}+2 x+C}$, each of which is a(n) __ explicit solution. Given the initial condition $\mathrm{y}(0)=0$, we choose $\mathrm{C}=\ldots \quad 1 \quad$ and the upper/lower (choose one) branch to get the solution $y=1-\sqrt{x^{3}+2 x^{2}+2 x+1}$. Given the initial condition $\mathrm{y}(0)=2$, we choose $\mathrm{C}=\underline{\mathbf{1}}$ and the opposite branch to get the solution $\underline{y=1+\sqrt{x^{3}+2 x^{2}+2 x+1} \text {. The domain of either of these functions is }{ }^{\text {a }} \text {. }}$ (-1, $\boldsymbol{\infty})$. Work for last question: $x^{3}+2 x^{2}+2 x+1=(x+1)\left(x^{2}+x+1\right)$, the disc of the $\mathbf{2}^{\text {nd }}$ factor is $(1)^{2}-4(1)(1)=-3<0$. Hence -1 is the only root and since the leading coefficient is positive, $[-1, \infty)$ is where the radicand is non-negative. We exclude the endpoint due to the vertical tangent line.

