$$
\frac{d y}{d t}+p(t) y=g(t) \quad \text { is a(n) _ linear__differential equation of order one with nonconstant (or variable) }
$$ coefficients. To solve the equation, we multiply both sides by $\mu(t)=$ \qquad , also known as

$a(n)$ integral factor (2 words). The antiderivative of the LHS will then be \qquad $\mathrm{y} \mu(\mathrm{t})$.
Thus, provided that the integral used to determine $\mu(t)$ can be found and that an antiderivative for $\mu(t) g(t)$ exists, then a closed form family of solutions can be found for the diffeq. Otherwise, the solution
will contain one or more unevaluated _integral_. Below you will find the family of solutions $y=t^{2}+\frac{c}{t^{2}}$ and the particular solution going through $(1,2)$: $y=t^{2}+\frac{1}{t^{2}}$. The domain of this particular solution is $\quad(0, \infty)$. When $\mathrm{c}=0$, we get the particular solution: $y=t^{2}$ with domain $\quad(-\infty, \infty)$, which divides the family of solutions into those that are asymptotic to the positive and negative \boldsymbol{y}-axis .

