Here are the solutions to p. 174 \#23-26 of the text:
23. Set $y_{2}(t)=t^{2} v(t)$. Substitution into the differential equation results in

$$
t^{2}\left(t^{2} v^{\prime \prime}+4 t v^{\prime}+2 v\right)-4 t\left(t^{2} v^{\prime}+2 t v\right)+6 t^{2} v=0
$$

After collecting terms, we end up with $t^{4} v^{\prime \prime}=0$. Hence $v(t)=c_{1}+c_{2} t$, and thus $y_{2}(t)=c_{1} t^{2}+c_{2} t^{3}$. Setting $c_{1}=0$ and $c_{2}=1$, we obtain $y_{2}(t)=t^{3}$.
24. Set $y_{2}(t)=t v(t)$. Substitution into the differential equation results in

$$
t^{2}\left(t v^{\prime \prime}+2 v^{\prime}\right)+2 t\left(t v^{\prime}+v\right)-2 t v=0
$$

After collecting terms, we end up with $t^{3} v^{\prime \prime}+4 t^{2} v^{\prime}=0$. This equation is linear in the variable $w=v^{\prime}$. It follows that $v^{\prime}(t)=c t^{-4}$, and $v(t)=c_{1} t^{-3}+c_{2}$. Thus
$y_{2}(t)=c_{1} t^{-2}+c_{2} t$. Setting $c_{1}=1$ and $c_{2}=0$, we obtain $y_{2}(t)=t^{-2}$.
25. Following the reduction of order technique given, $y_{1}=1 / t, p(t)=3 / t$, so the equation for v is $v^{\prime \prime} / t+v^{\prime} / t^{2}=0$. After separating the variables the equation becomes $v^{\prime \prime} / v^{\prime}=-1 / t$, so $\ln v^{\prime}=-\ln t+c$. We obtain that $v^{\prime}=c / t$ and then $v=$ $c \ln t$. Thus the second solution is $y_{2}=\ln t / t$.
26. Set $y_{2}(t)=t v(t)$. Substitution into the differential equation results in $v^{\prime \prime}-v^{\prime}=$ 0 . This equation is linear in the variable $w=v^{\prime}$. It follows that $v^{\prime}(t)=c_{1} e^{t}$, and $v(t)=c_{1} e^{t}+c_{2}$. Thus $y_{2}(t)=c_{1} t e^{t}+c_{2} t$. Setting $c_{1}=1$ and $c_{2}=0$, we obtain $y_{2}(t)=t e^{t}$.

