Exam is $\mathbf{1}$ hour 15 minutes.
Ok: handwritten notes, calculator (TI 83/84) Not ok: printouts, book, TI 89, laptop, tablet, cell phone or other handheld Part I (30\%, 10 min) ~ quizzes: fill in blank, short answer, T-F, matching. Emph: defs, thms \& analysis using slope field. There are 2 theorems which apply to first order ODE's. For a linear equation, as long as the coefficient functions are continuous, a solution always___्_ exists_ and is ___unique . In fact, the validity of solutions will extend until a discontinuity in the coefficient functions is reached. For instance, for $y^{\prime}-3 /\left(t^{2}-4\right) y=1 / t^{2} ; \quad y(1)=3$, the solution has
\qquad as its interval of validity. For a nonlinear equation $y^{\prime}=f(t, y)$, a solution always___exists_ and is
\qquad provided that f and the partial $\underline{\text { derivative_ (} 2 \text { words) of } \mathrm{f} \text { are _continuous }}$ around the IV. A slightly weaker theorem holds if we have __ continuity of f but not of its __partial__ derivative __ (2 words). In that case, we get _existence_ but not uniqueness_. For the nonlinear equation $\frac{d y}{d x}=\frac{x^{2}}{1-y^{2}} \quad$ a solution will always exists and is \qquad unique provided that \qquad $y \neq \pm 1$ \qquad . The interval of validity is much more complicated as
 it will vary for each initial value. The slope field for the same equation is given to the left. For the IV $(0,0)$, darken the solution on the graph. The approximate interval of validity for the solution is
\qquad . For the IV $(0,2)$, darken its solution on the graph. The approximate interval of validity for its solution is $(-\infty, 1.75) \ldots$. We discuss the limiting behavior, assuming that the solutions follow the direction of the arrows.

For any solution whose initial value is in $\mathbf{Q 1}$ and has $\mathbf{y}>\mathbf{1}$: It is repelled fron $y=1 . y=-x$. (circle one) and it is attracted
to $y=1, y=-x$. (circle one). $\lim _{x \rightarrow-\infty} y=-\infty$.
Part II ($15 \%, 15 \mathrm{~min}$) Linear first order IVP with nonconstant coefficients (explicit sol'n)

$$
\begin{aligned}
& t y^{\prime}+2 y=t^{2}-t+1 ; \quad y(1)=1 / 2 \\
& y^{\prime}+(2 / t) y=t-1+1 / t \\
& \mu=e^{\int 2 / t t t}=t^{2} \\
& t^{2} y^{\prime}+2 t y=t^{3}-t^{2}+t \\
& t^{2} y=t^{4} / 4-t^{3} / 3+t^{2} / 2+c \\
& y=t^{2} / 4-t / 3+1 / 2+c t^{-2} \\
& y(1)=1 / 4-1 / 3+1 / 2+c=1 / 2 \\
& c=1 / 12 \\
& y=t^{2} / 4-t / 3+1 / 2+1 /\left(12 t^{2}\right)
\end{aligned}
$$

Part III（ $15 \%, 15 \mathrm{~min}$ ）Exact equation which requires an I．F，like p 134 \＃31．（ $1^{\text {st }}$ verify exactness，implicit sol＇n）

$$
\begin{aligned}
& 3 x^{2} y+y^{2}+\left(2 x^{3}+3 x y\right) y^{\prime}=0 \\
& M_{y}=3 x^{2}+2 y \neq 6 x^{2}+3 y=N_{x} \text { so not exact }
\end{aligned}
$$

There are 2 formulas to try to find the I．F．
$\frac{d \mu}{d x}=\frac{M_{y}-N_{x}}{N} \mu . \quad \frac{d \mu}{d y}=\frac{M_{y}-N_{x}}{M} \mu$
Is the coefficient of μ in the $1^{\text {st }}$ equation a function of x ？
$\frac{M_{y}-N_{x}}{N}=\frac{3 x^{2}+2 y-\left(6 x^{2}+3 y\right)}{2 x^{3}+3 x y}=\frac{-3 x^{2}-y}{2 x^{3}+3 x y}=\frac{-\left(3 x^{2}+y\right)}{x\left(2 x^{2}+3 y\right)}$
No，it is not！Next，we see if the coefficient of μ in the $2^{\text {nd }}$ equation is a function of y ：
$\frac{M_{y}-N_{x}}{M}=\frac{-\left(3 x^{2}+y\right)}{3 x^{2} y+y^{2}}=\frac{-\left(3 x^{2}+y\right)}{y\left(3 x^{2}+y\right)}=\frac{-1}{y}$
Yes！Actually，we only need the IF up to a constant，so we solve
$\frac{d \mu}{d y}=\frac{1}{y} \mu \Rightarrow \mu=y$
Multiplying the original equation by the IF we get：
$3 x^{2} y^{2}+y^{3}+\left(2 x^{3} y+3 x y^{2}\right) y^{\prime}=0$
$M_{y}=6 x^{2} y+3 y^{2}=N_{x}$ so exact！
Integrating M with respect to x ，we get
$\psi=x^{3} y^{2}+x y^{3}+C(y)$
$\psi_{y}=2 x^{3} y+3 x y^{2}+C^{\prime}(y)=2 x^{3} y+3 x y^{2}$
So we can set $C(y)=0$ and the implicit solution is：
$x^{3} y^{2}+x y^{3}=c$
Part IV（ $10 \%, 10 \mathrm{~min}$ ）Euler method for numerical solution：$h=0.5$ ；t final is 4 ．Be sure to provide a screen shot for the ＂ $\mathrm{y}=$＂window in＂seq＂mode as well a table showing the values of t and y for integer values of t ．
$y^{\prime}=2+3 t-y ; \quad y(1)=-1$

```
    nMin=0
-u(n)日
    u(nMin)日\{1\}
    \(\because \vee(n)\) 日v \((n-1)+.5(2+3 u(n-1)\)
    \(\vee(n M i n) 日\{-1\}\)
    \(\because w(n)=\)
    \(w(n M i n)=\)
```

TABLE SETUP TblStart＝■ $\Delta T b l=2$ Indpnt：Ruto Ask Depend：Ruto Ask

n	u（n）	$V(n)$
${ }^{8}$	1	
2	$\frac{2}{3}$	4．25 7.8125 18.
6	4	10.953
		13.988
$1{ }_{12}^{18}$	${ }_{6}$	${ }^{16.999}{ }^{19} 9$
14	8	
16 18	${ }_{10}$	${ }_{29}^{26}$
18 28	18 11	29
$v(n)=10.953125$		

Part V（ 30% ， 20 min ） $31^{\text {st }}$ order eqtns．Identify type，provide $1^{\text {st }}$ few steps for sol＇n，\＆check soln（will be given）． p．133，problems 4,30 and 32 ．See openlab＂part V exam 1 ＂for solutions（actually only some of the solutions）． 4．Equation is linear：

$$
\begin{aligned}
& y^{\prime}=3-6 x+y-2 x y \\
& y^{\prime}+(2 x-1) y=3-6 x
\end{aligned}
$$

It is now in standard form．Following the directions from the document＂part V exam 1＂．We need to find the IF．
$\mu=e^{\int 2 x-1 d x}=e^{x^{2}-x}$

Multiplying by IF and integrating, we get
$e^{x^{2}-x} y=\int(3-6 x) e^{x^{2}-x} d x=-3 \int(2 x-1) e^{x^{2}-x} d x=-3 e^{x^{2}-x}+c$ or $y=-3+c e^{x-x^{2}}$
Actually, you were only asked to express answer as an integral:
$y=e^{x-x^{2}} \int(3-6 x) e^{x^{2}-x} d x$
30. Note how the degree of every term is 2 , which is why the equation is homogeneous. Solving for y^{\prime} :

$$
y^{\prime}=\frac{3 y^{2}+2 x y}{2 x y+x^{2}}=\frac{3(y / x)^{2}+2(y / x)}{2(y / x)+1} .
$$

Substituting $u=y / x$ gives that $y=u x$ and then

$$
y^{\prime}=u^{\prime} x+u=\frac{3 u^{2}+2 u}{2 u+1}
$$

which implies that

$$
u^{\prime} x=\frac{3 u^{2}+2 u}{2 u+1}-u=\frac{u^{2}+u}{2 u+1}
$$

Completing the variable separation, your final answer is:
$\frac{2 u+1}{u^{2}+u}=\frac{d x}{x}$
32. Equation is Bernoulli with $n=2$:

$$
x y^{\prime}+y-y^{2} e^{2 x}=0 \text { or } y^{\prime}+(1 / x) y=\left(e^{2 x} / x\right) y^{2}
$$

According to the instructions, we need to make the substitution and put the new ODE into standard linear form. When $n=2$, our substitution formula boils down to $y=v^{-1} ; y^{\prime}=-v^{-2} v^{\prime}$. Making the substitution and then multiplying by $-v^{2}$, we get $-v^{-2} v^{\prime}+(1 / x) v^{-1}=\left(e^{2 x} / x\right) v^{-2}$ or $v^{\prime}-(1 / x) v=-e^{2 x} / x$,
which is linear in standard form. Hence, the prescribed tasks have been completed.

