Exam is $\mathbf{1}$ hour 15 minutes.
Ok: handwritten notes, calculator (TI 83/84) Not ok: printouts, book, TI 89, laptop, tablet, cell phone or other handheld
Part I ($30 \%, 10 \mathrm{~min}$) ~ quizzes: fill in blank, short answer, T-F, matching. Emph: defs, thms \& analysis using slope field.
There are 2 theorems which apply to first order ODE's. For a linear equation, as long as the coefficient functions are continuous, a solution always \qquad and is \qquad . In fact, the validity of solutions will extend until a discontinuity in the coefficient functions is reached. For instance, for $y^{\prime}-3 /\left(t^{2}-4\right) y=1 / t^{2} ; \quad y(1)=3$, the solution has
\qquad as its interval of validity. For a nonlinear equation $y^{\prime}=f(t, y)$, a solution always \qquad and is provided that f and the \qquad (2 words) of f are \qquad around the IV. A slightly weaker theorem holds if we have \qquad of f but not its \qquad (2 words). In that case, we get \qquad but not \qquad .For the nonlinear equation $\quad \frac{d y}{d x}=\frac{x^{2}}{1-y^{2}} \quad$ a solution will always and is \qquad provided that \qquad . The interval of validity is much more complicated as it will
 vary for each initial value. The slope field for the same equation is given to the left. For the IV $(0,0)$, darken the solution on the graph. The approximate interval of validity for the solution is \qquad .
For the IV $(0,2)$, darken its solution on the graph. The approximate interval of validity for its solution is \qquad . We discuss the limiting behavior, assuming that the solutions follow the direction fo the arrows.

For any solution whose initial value is in $\mathbf{Q 1}$ and has $\mathbf{y}>1$: It is repelled from $y=1, \mathbf{y}=-\mathbf{x}$. (circle one) and it is attracted to $y=1, \mathrm{y}=-\mathrm{x}$. (circle one). $\lim _{x \rightarrow-\infty} y=$ \qquad _.

Part II $(15 \%, 15 \mathrm{~min})$ Linear first order IVP with nonconstant coefficients (explicit sol'n)
$t y^{\prime}+2 y=t^{2}-t+1 ; \quad y(1)=1 / 2$
Part III (15%, $15 \min$) Exact equation which requires an I.F, like p $134 \# 31$. ($1^{\text {st }}$ verify exactness, implicit sol'n)

$$
\frac{d y}{d x}=-\frac{3 x^{2} y+y^{2}}{2 x^{3}+3 x y}
$$

Part IV $(10 \%, 10 \mathrm{~min})$ Euler method for numerical solution: $h=0.5$; t final is 4 . Be sure to provide a screen shot for the " $\mathrm{y}=$ " window in "seq" mode as well a table showing the values of t and y for integer values of t. $y^{\prime}=2+3 t-y ; \quad y(1)=-1$

Part V (30%, 20 min) $31^{\text {st }}$ order eqtns. Identify type, provide $1^{\text {st }}$ few steps for sol'n, \& check soln (will be given). p. 133, problems 4, 30 and 32. See openlab "part V exam 1" for solutions.

