| ΜΔΤ244Ω     | Practice Final Exam Halleck | Spring 2019  |
|-------------|-----------------------------|--------------|
| IVIA I 2440 | Practice Filiai Exam Hametk | Shillig Tota |

| Name: |  |  |
|-------|--|--|

- Book and notes are prohibited except for a single sheet (back and front) with hand-written formulae/notes. Submit formula sheet with your exam for up to 5 extra pts.
- You may write on test page. However, put all your work and answers into the blue book.
- No credit will be given for any answer that is not backed up with work.
- The use of any electronic devices except a graphing calculator is strictly prohibited.
- Each problem is worth 10 points (Some of the problems on the actual exam will have fewer parts)
- 1. Let C(x, y) be the statement "x finds y charming," where the domain for x and y consists of all people in the world. Use quantifiers to express each of the following statements.
  - (a) Everyone finds themselves charming.
  - (b) Someone finds Jerry charming.
  - (c) There is a person that finds everyone charming.
  - (d) If you find Max charming, then you will also find Gina charming.
- 2. Answer each of the following questions.
  - (a) Show that  $p \rightarrow q$  is logically equivalent to  $\neg q \rightarrow \neg p$  using a truth table.
  - (b) Show that  $\neg p \rightarrow (q \rightarrow r) \equiv q \rightarrow (p \lor r)$  without using a truth table.
  - (c) Show that  $\neg (p \rightarrow q) \rightarrow \neg q$  is a tautology without using a truth table.
- 3. Prove that for all integers n, n is even if and only if 5n + 3 is odd.
- 4. Translate the following specifications into English where:

F(p): "printer p is out of service" B(p): "printer p is busy"

Q(j): "print job j is queued"

(a) 
$$\exists j \ Q(j) \rightarrow \exists p \ (F(p) \lor B(p))$$

(b) 
$$\forall j \ Q(j) \rightarrow \forall p \ F(p)$$

NOTE: assume that a print job that is being processed is no longer queued.

- 5. (a) Determine cardinality of the set  $A = \{\emptyset, \{\alpha\}, \{\emptyset, \alpha\}\}\$  as well as each member of set A.
  - (b) Draw the Venn diagram for the following combination of the sets A, B, and C.

$$A \cap (B - C)$$
 (shade A and  $B - C$  as intermediate steps and use a legend)

- (c) Is it true that  $A \cap (B C) = (A \cap B) (A \cap C)$ ? Use a truth table.
- 6. Determine if the following functions are 1-1 and/or onto:

(a) 
$$f: Z \to Z, f(x) = 3x^3 - 2$$

(b) 
$$g: R \to Z, g(x) = \lfloor x/2 \rfloor + 6$$

- 7. Use insertion sort with input 2, 6, 1, 4, 3, 5, showing as separate steps the comparisons, rotations and insertions. You should have approximately 6+5+4+3+2+1 steps, each showing all or a portion of the list.
- 8. The ISBN-10 of *Mathematical Modeling and Computer Simulation* is 0-534-Q8478-1, where *Q* is a digit. Find the value of *Q*. Use the Euclidean Algorthm (EA) to find the appropriate inverse.
- 9. If encryption function is  $f(p) = (7p + 13) \mod 26$ , decrypt TZURCQKIDB: translate letters into #s, apply appropriate decryption function (use EA to find inverse of 7) & then translate #s back into letters.
- 10. Choose ONE of the following 2 INDUCTION proof problems:
  - (i)(a) Find formula for  $\frac{1}{1\cdot 2} + \frac{1}{2\cdot 3} + \cdots + \frac{1}{n(n+1)}$  by examining values of this expression for small values of n (b) Prove the formula you conjectured in part (a).
  - (ii) Prove that  $3^n < n!$  if n is greater than 6.