Basic Structures: Sets, Functions, Sequences, Sums, and Matrices Chapter 2

With Question/Answer Animations

Chapter Summary

- Sets
 - The Language of Sets
 - Set Operations
 - Set Identities
- Functions
 - Types of Functions
 - Operations on Functions
 - Computability
- Sequences and Summations
 - Types of Sequences
 - Summation Formulae
- Set Cardinality
 - Countable Sets
- Matrices
 - Matrix Arithmetic

Sets

Section 2.1

Section Summary

- Definition of sets
- Describing Sets
 - Roster Method
 - Set-Builder Notation
- Some Important Sets in Mathematics
- Empty Set and Universal Set
- Subsets and Set Equality
- Cardinality of Sets
- Tuples
- Cartesian Product

Introduction

- Sets are one of the basic building blocks for the types of objects considered in discrete mathematics.
 - Important for counting.
 - Programming languages have set operations.
- Set theory is an important branch of mathematics.
 - Many different systems of axioms have been used to develop set theory.
 - Here we are not concerned with a formal set of axioms for set theory. Instead, we will use what is called naïve set theory.

Sets

- A *set* is an **unordered** collection of objects.
 - the students in this class
 - the chairs in this room
- The objects in a set are called the *elements*, or *members* of the set. A set is said to *contain* its elements.
- $a \in A$ denotes that a is an element of the set A.
- If *a* is not a member of *A*, write $a \notin A$

Repeated elements, use of elipses

- $S = \{a, b, c, d\}$
- Order not important

$$S = \{a,b,c,d\} = \{b,c,a,d\}$$

 Each distinct object is either a member or not; listing more than once does not change the set.

$$S = \{a,b,c,d\} = \{a,b,c,b,c,d\}$$

• Elipses (...) may be used to describe a set without listing all of the members when the pattern is clear.

$$S = \{a,b,c,d,....,z\}$$

Examples

• Set of all vowels in the English alphabet:

$$V = \{a,e,i,o,u\}$$

Set of all odd positive integers less than 10:

$$O = \{1,3,5,7,9\}$$

Set of all positive integers less than 100:

$$S = \{1,2,3,\dots,99\}$$

Set of all integers less than 0:

$$S = \{...., -3, -2, -1\}$$

Some Important Sets

```
N = natural\ numbers = \{0,1,2,3....\}
Z = integers = \{..., -3, -2, -1, 0, 1, 2, 3, ...\}
Z^+ = positive integers = {1,2,3,....}
\mathbf{R} = set of real numbers
R^+ = set of positive real numbers
C = set of complex numbers.
Q = set of rational numbers
\mathbf{R} \setminus \mathbf{Q} = set of irrational numbers
```

Set-Builder Notation

 Specify the property or properties that all members must satisfy:

$$S = \{x \mid x \in \mathbf{Z}^+ \text{ and } x < 100\}$$

 $O = \{x \mid x \text{ is an odd positive integer less than } 10\}$
 $O = \{x \in \mathbf{Z}^+ \mid x \text{ is odd and } x < 10\}$

• A predicate may be used:

$$S = \{x \mid P(x)\}$$

- Example: $S = \{x \mid Prime(x)\}$
- Positive rational numbers:

$$\mathbf{Q}^+ = \{x \in \mathbf{R} \mid x = p/q, \text{ for some positive integers } p, q\}$$

Interval Notation

$$[a,b] = \{x \mid a \le x \le b\}$$

$$[a,b) = \{x \mid a \le x < b\}$$

$$(a,b) = \{x \mid a < x \le b\}$$

$$(a,b) = \{x \mid a < x < b\}$$

Interval Notation

```
[a,b] = \{x \mid a \le x \le b\} closed!

[a,b) = \{x \mid a \le x < b\} half-open (or half-closed!)

(a,b] = \{x \mid a < x \le b\} ditto

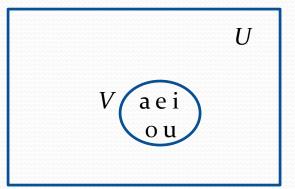
(a,b) = \{x \mid a < x < b\} open!
```


Universal Set and Empty Set

- The *universal set U* is the set containing everything currently under consideration.
 - Sometimes implicit
 - Sometimes explicitly stated.
 - Contents depend on the context.
- The empty set is the set with no elements.

(Symbolized Ø, but {} is also used.)

Venn Diagram



Bertrand Russell (1872-1970) Cambridge, UK Nobel Prize Winner

Russell's Paradox

- Let *S* be the set of all sets which are not members of themselves.
- A paradox results from trying to answer the question "Is S a member of itself?"
- Related Paradox:
 - Henry is a barber who shaves all people who do not shave themselves. A paradox results from trying to answer the question "Does Henry shave himself?"

Some things to remember

Sets can be elements of sets.

```
{{1,2,3},a, {b,c}}
{N,Z,Q,R}
```

• The empty set is different from a set **containing** the empty set.

```
\emptyset \neq \{\emptyset\}
```

Set Equality

Definition: Two sets are *equal* if and only if they have the same elements.

• If A and B are sets, then A and B are equal if and only if $\forall x (x \in A \leftrightarrow x \in B)$

• We write A = B if A and B are equal sets.

$$\{1,3,5\} = \{3,5,1\}$$

 $\{1,5,5,5,3,3,1\} = \{1,3,5\}$

Subsets

Definition: The set *A* is a *subset* of *B*, if and only if every element of *A* is also an element of *B*.

- The notation $A \subseteq B$ is used to indicate that A is a subset of the set B.
- $A \subseteq B$ holds if and only if $\forall x (x \in A \rightarrow x \in B)$ is true.
 - 1. Because a ∈ \emptyset is always false, \emptyset ⊆ S, for every set S.
 - 2. Because $a \in S \rightarrow a \in S$, $S \subseteq S$, for every set S.

Showing a Set is or is not a Subset

- Showing that A is a Subset of B: To show that $A \subseteq B$, show that if x belongs to A, then x also belongs to B.
- **Showing that A is not a Subset of B**: To show that *A* is not a subset of *B*, $A \nsubseteq B$, find an element $x \in A$ with $x \notin B$. (Such an x is a counterexample to the claim that $x \in A$ implies $x \in B$.)

Examples:

- 1. The set of all computer science majors at your school is a subset of all students at your school.
- 2. The set of integers with squares less than 100 is not a subset of the set of nonnegative integers.

Another look at Equality of Sets

• Recall that two sets A and B are equal, denoted by A = B, iff $\forall x (x \in A \leftrightarrow x \in B)$

• Using logical equivalences we have that A = B iff

$$\forall x[(x \in A \to x \in B) \land (x \in B \to x \in A)]$$

• This is equivalent to

$$A \subseteq B$$
 and $B \subseteq A$

Proper Subsets

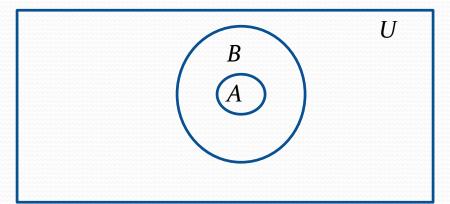
Definition: If $A \subseteq B$, but $A \neq B$, then we say A is a *proper subset* of B, denoted by $A \subseteq B$.

If $A \subset B$, then

$$\forall x (x \in A \to x \in B) \land \exists x (x \in B \land x \not\in A)$$

is true.

Venn Diagram



Exercise: Give an example of proper subset of Z.

Set Cardinality

Definition: If $\exists n \in \mathbb{N}$ distinct elements in S, we say that S is *finite*. Otherwise it is *infinite*. The *cardinality* of set A is denoted by |A|. If A is a finite, then |A| is this same n.

Examples:

- $|\emptyset| = 0$
- 2. Let S be the letters of the English alphabet. Then |S| = 26
- 3. $|\{1,2,3\}| = 3$
- 4. $|\{\emptyset\}| = 1$
- 5. The set of integers is infinite.

Power Sets

Definition: The set of all subsets of a set A, denoted $\mathcal{P}(A)$, is called the *power set* of A.

Example: If
$$A = \{a,b\}$$
 then $\mathcal{P}(A) = \{\emptyset, \{a\}, \{b\}, \{a,b\}\}$

• If a set has n elements, then the cardinality of the power set is 2^n .

(Chapters 5 and 6 have several different ways to show this.)

Tuples

The *ordered* n-tuple $(a_1,a_2,...,a_n)$ is the ordered collection that has a_1 as its 1^{st} element and a_2 as its 2^{nd} element and so on until a_n as its last element.

- Two n-tuples are equal if and only if their corresponding elements are equal.
- 2-tuples are called ordered pairs.
- The ordered pairs (a, b) and (c, d) are equal if and only if a = c and b = d.

Cartesian Product

René Descartes (1596-1650)

Definition: The *Cartesian Product* of two sets A and B, denoted by $A \times B$ is the set of ordered pairs (a,b) where $a \in A$ and $b \in B$.

Example:
$$A \times B = \{(a,b) | a \in A \land b \in B\}$$

 $A = \{a,b\}, B = \{1,2,3\}$
 $A \times B = \{(a,1),(a,2),(a,3),(b,1),(b,2),(b,3)\}$

Definition: A subset R of the Cartesian product $A \times B$ is called a *relation* from the set A to the set B. (Relations are covered in depth in Chapter 9.)

Cartesian Product

Definition: The cartesian products of the sets A_1, A_2, \dots, A_n , denoted $A_1 \times A_2 \times \dots \times A_n$, is the set of ordered n-tuples (a_1, a_2, \dots, a_n) where $a_i \in A_i$ for $i = 1, \dots n$.

$$A_1 \times A_2 \times \dots \times A_n = \{(a_1, a_2, \dots, a_n) | a_i \in A_i \text{ for } i = 1, 2, \dots n\}$$

Example: Find $A \times B \times C$, if $A = \{0,1\}$, $B = \{1,2\}$, $C = \{0,1,2\}$

Solution:

$$A \times B \times C = \{(0,1,0), (0,1,1), (0,1,2), (0,2,0), (0,2,1), (0,2,2), (1,1,0), (1,1,1), (1,1,2), (1,2,0), (1,2,1), (1,2,2)\}$$

Truth Sets of Quantifiers

Given a predicate P and a domain D, we define the *truth set* of P to be the set of elements in D for which P(x) is true. The truth set of P(x) is denoted by

$$\{x \in D | P(x)\}$$

Example: The truth set of P(x) where the domain is the integers and P(x) is "|x| = 1" is the set $\{-1,1\}$