$\begin{gathered} \quad \begin{array}{c} p \\ p \rightarrow q \end{array} \\ \therefore \frac{q}{q} \end{gathered}$	$(p \wedge(p \rightarrow q)) \rightarrow q$	Modus ponens
$\begin{gathered} \neg q \\ \therefore \neg q \\ \hline \neg p \end{gathered}$	$(\neg q \wedge(p \rightarrow q)) \rightarrow \neg p$	Modus tollens
$\begin{aligned} & p \rightarrow q \\ & q \rightarrow r \\ & \therefore \frac{p \rightarrow r}{p \rightarrow r} \end{aligned}$	$((p \rightarrow q) \wedge(q \rightarrow r)) \rightarrow(p \rightarrow r)$	Hypothetical syllogism
$\begin{aligned} & p \vee q \\ & \therefore \neg p \\ & \therefore \end{aligned}$	$((p \vee q) \wedge \neg p) \rightarrow q$	Disjunctive syllogism
$\therefore \frac{p}{p \vee q}$	$p \rightarrow(p \vee q)$	Addition
$\therefore \frac{p \wedge q}{p}$	$(p \wedge q) \rightarrow p$	Simplification
$\begin{gathered} p \\ \therefore \frac{q}{p \wedge q} \end{gathered}$	$((p) \wedge(q)) \rightarrow(p \wedge q)$	Conjunction
$\begin{aligned} & p \vee q \\ & \therefore \neg p \vee r \\ & \therefore \vee r \end{aligned}$	$((p \vee q) \wedge(\neg p \vee r)) \rightarrow(q \vee r)$	Resolution

$\therefore \frac{\forall x P(x)}{P(c)}$	Universal instantiation
$\therefore \frac{P(c) \text { for an arbitrary } c}{\forall x P(x)}$	Universal generalization
$\therefore \frac{\exists x P(x)}{P(c) \text { for some element } c}$	Existential instantiation
$\therefore \frac{P(c) \text { for some element } c}{\exists x P(x)}$	Existential generalization

Replace implication with or:

TABLE 7 Logical Equivalences Involving Conditional Statements.

$$
\begin{aligned}
& p \rightarrow q \equiv \neg p \vee q \\
& p \rightarrow q \equiv \neg q \rightarrow \neg p \\
& p \vee q \equiv \neg p \rightarrow q \\
& p \wedge q \equiv \neg(p \rightarrow \neg q) \\
& \neg(p \rightarrow q) \equiv p \wedge \neg q \\
& (p \rightarrow q) \wedge(p \rightarrow r) \equiv p \rightarrow(q \wedge r) \\
& (p \rightarrow r) \wedge(q \rightarrow r) \equiv(p \vee q) \rightarrow r \\
& (p \rightarrow q) \vee(p \rightarrow r) \equiv p \rightarrow(q \vee r) \\
& (p \rightarrow r) \vee(q \rightarrow r) \equiv(p \wedge q) \rightarrow r
\end{aligned}
$$

Replace biconditional with 2 implications:

TABLE 8 Logical

Equivalences Involving
Biconditional Statements.

$$
\begin{aligned}
& p \leftrightarrow q \equiv(p \rightarrow q) \wedge(q \rightarrow p) \\
& p \leftrightarrow q \equiv \neg p \leftrightarrow \neg q \\
& p \leftrightarrow q \equiv(p \wedge q) \vee(\neg p \wedge \neg q) \\
& \neg(p \leftrightarrow q) \equiv p \leftrightarrow \neg q
\end{aligned}
$$

