$p \\ p \rightarrow q \\ \therefore \frac{p \rightarrow q}{q}$	$(p \land (p \to q)) \to q$	Modus ponens
$ \begin{array}{c} \neg q \\ p \to q \\ \therefore \ \overline{\neg p} \end{array} $	$(\neg q \land (p \rightarrow q)) \rightarrow \neg p$	Modus tollens
$p \to q$ $\frac{q \to r}{r}$ $\therefore \overline{p \to r}$	$((p \to q) \land (q \to r)) \to (p \to r)$	Hypothetical syllogism
$p \lor q$ $\neg p$ $\therefore \overline{q}$	$((p \lor q) \land \neg p) \to q$	Disjunctive syllogism
$\therefore \frac{p}{p \lor q}$	$p \to (p \lor q)$	Addition
$\therefore \frac{p \wedge q}{p}$	$(p \land q) \rightarrow p$	Simplification
$\begin{array}{c} p \\ q \\ \therefore p \land q \end{array}$	$((p) \land (q)) \rightarrow (p \land q)$	Conjunction
$p \lor q$ $\neg p \lor r$ $\therefore \overline{q \lor r}$	$((p \lor q) \land (\neg p \lor r)) \to (q \lor r)$	Resolution

$\therefore \frac{\forall x P(x)}{P(c)}$	Universal instantiation
$\therefore \frac{P(c) \text{ for an arbitrary } c}{\forall x P(x)}$	Universal generalization
$\therefore \frac{\exists x P(x)}{P(c) \text{ for some element } c}$	Existential instantiation
$\therefore \frac{P(c) \text{ for some element } c}{\exists x P(x)}$	Existential generalization

Replace implication with or:

TABLE 7 Logical Equivalences
Involving Conditional Statements. $p \rightarrow q \equiv \neg p \lor q$ $p \rightarrow q \equiv \neg p \lor q$ $p \rightarrow q \equiv \neg q \rightarrow \neg p$ $p \lor q \equiv \neg p \rightarrow q$ $p \land q \equiv \neg (p \rightarrow \neg q)$ $\neg (p \rightarrow q) \equiv p \land \neg q$ $(p \rightarrow q) \land (p \rightarrow r) \equiv p \rightarrow (q \land r)$ $(p \rightarrow r) \land (q \rightarrow r) \equiv (p \lor q) \rightarrow r$ $(p \rightarrow q) \lor (p \rightarrow r) \equiv p \rightarrow (q \lor r)$ $(p \rightarrow r) \lor (q \rightarrow r) \equiv p \rightarrow (q \lor r)$ $(p \rightarrow r) \lor (q \rightarrow r) \equiv (p \land q) \rightarrow r$

Replace biconditional with 2 implications:

TABLE 8 Logical
Equivalences Involving
Biconditional Statements. $p \leftrightarrow q \equiv (p \rightarrow q) \land (q \rightarrow p)$ $p \leftrightarrow q \equiv \neg p \leftrightarrow \neg q$ $p \leftrightarrow q \equiv (p \land q) \lor (\neg p \land \neg q)$ $\neg (p \leftrightarrow q) \equiv p \leftrightarrow \neg q$