
Chapter 5

With Question/Answer Animations

Copyright © McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill Education.

Chapter Summary
 Mathematical Induction

 Strong Induction

 Well-Ordering

 Recursive Definitions

 Structural Induction

 Recursive Algorithms

 Program Correctness

4

Program Correctness (4.5)
 Introduction

Question: How can we be sure that a program always
produces the correct answer?

 The syntax is correct (all bugs removed!)

 Testing a program with a randomly selected sample of
input data is not sufficient

 Correctness of a program should be proven!

 Theoretically, it is never possible to mechanize the proof
of correctness of complex programs

 We will cover some of the concepts and methods that
prove that “simple” programs are correct

5

Program verification
 To prove program correct, we need two parts:

1. For every possible input, the correct answer is
obtained if the program terminates

2. The program always terminates

6

Definition 1:
A program, or program segment, S is said to be partially

correct with respect to the initial assertion p and the final
assertion q if

whenever p is true for the input values of S and S terminates,
then q is true for the output values of S.

The notation p{S}q indicates that the program, or program
segment, S is partially correct with respect to the initial
assertion p and the final assertion q.

7

Some notes and Example
This definition of partial correctness

 has nothing to do with whether a program terminates or not

 is due to Tony Hoare

Example: Show that the program segment

y := 2

z := x + y

is correct with respect to

 initial assertion p: x = 1;

 final assertion q: z = 3.

Solution: p is true  x = 1  y := 2  z := 3  partially
correct w.r.t. p and q

8

Rules of inference
Goal: Split the program into a series of subprograms and

show that each subprogram is correct. This is done
through a rule of inference.

 Let us start by taking the program S and splitting it
into 2 subprograms S1 and S2 (S = S1; S2)

 Assume that we have S1 correct w.r.t. p and q (initial
and final assertions)

 Assume that we have S2 correct w.r.t. q and r (initial
and final assertions)

9

Rules of inference (cont.)
 It follows that

“if p is true  (S1 executed and terminates) then q is true”

“if q is true  (S2 executed and terminates) then r is true”

“thus, if p = true and S = S1; S2 is executed and
terminates then r = true”

This rule of inference is known as the composition rule.

 It is written as:

p {S1} q
q {S2} r

p {S1; S2) r

10

Conditional Statements
Assume that a program segment has the following form:

“if condition then S” where S is a block of statement

Goal: Verify that this piece of code is correct

Strategy:

a) We must show that when p is true and condition is
also true, then q is true after S terminates

b) We also must show that when p is true and condition
is false, then q is true

11

Conditional Statements (cont.)

 We summarize as:

(p  condition) {S} q
(p  condition)  q

p {if condition then S} q

Example: Verify that the following program segment is correct w.r.t.
the initial assertion T and the final assertion y  x

if x > y then y:= x

Solution:
a) If T = true and x > y is true then the final assertion y  x is true
b) If T = true and x > y is false then x  y is true  final assertion is

true again

12

If then else
“if condition then S1 else S2”

if condition is true then S1 executes; otherwise S2 executes

This piece of code is correct if:

a) If p = true  condition = true  q = true after S1 terminates

b) If p = true  condition = false  q = true after S2 terminates

(p  condition) {S1}q
(p  condition) {S2}q

p {if condition then S1 else S2) q

13

Example
Check that the following program segment

if x < 0 then

abs := -x

else

abs := x

is correct w.r.t. the initial assertion T and the final
assertion abs = |x|.

Solution:

a) If T = true and (x<0) = true  abs := -x; compatible with
definition of abs

b) If T = true and (x<0)= false  (x  0) = true  abs := x;
also compatible with abs definition.

14

Loop invariants
How to prove codes that contain the while loop:

“while condition S”

An assertion that remains true each time S is a loop invariant, i.e.,

p is a loop invariant if:

(p  condition) {S} p is true

If p is a loop invariant, then if p is true before the program
segment is executed, p and condition are true after
termination, if it occurs. We can write the rule of inference as:

(p  condition) {S} p

p {while condition S} (condition  p)

15

Loop example: factorial
Determine the loop invariant that verifies that the following

program segment terminates with factorial = n! when n  0.

i := 1

factorial := 1

While i < n

begin

i := i + 1

factorial := factorial * i

end

16

Loop example: factorial (cont.)
Solution:

Choose p = (factorial = i!  (i  n))

a) Prove that p is in fact a loop invariant

b) If p is true before execution, p and condition are true
after termination

c) Prove that the while loop terminates

17

Loop example: factorial (cont.)
a) P is a loop invariant:

Suppose p is true at the beginning of the execution of
the while loop and the while condition holds;

 factorial = i!  i < n

inew = i + 1

factorialnew = factorial * (i + 1) = (i + 1)! = inew!

Since i < n  inew = i + 1  n

 p true at the end of the execution of the loop

 p is a loop invariant

18

Loop example: factorial (cont.)
b) Before entering the loop, i = 1  n and

factorial :=1 = 1! = i!  (i  n)  (factorial = i!) = true
 p = true
Since p is a loop invariant
 through the inference rule,
if the while loop terminates
 p = true and i < n false  i = n and factorial = i! = n!

c) While loop terminates:
Because p is a loop invariant, the rule of inference implies

that if the while loop terminates, it terminates with p
true and with i < n false.

In this case, at the end, factorial = i! and i<=n are true,
but i<n is false, in other words,
i=n and factorial= i!=n!, as desired.

