
Chapter 5

With Question/Answer Animations

Copyright © McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill Education.

Chapter Summary
 Mathematical Induction

 Strong Induction

 Well-Ordering

 Recursive Definitions

 Structural Induction

 Recursive Algorithms

 Program Correctness

4

Program Correctness (4.5)
 Introduction

Question: How can we be sure that a program always
produces the correct answer?

 The syntax is correct (all bugs removed!)

 Testing a program with a randomly selected sample of
input data is not sufficient

 Correctness of a program should be proven!

 Theoretically, it is never possible to mechanize the proof
of correctness of complex programs

 We will cover some of the concepts and methods that
prove that “simple” programs are correct

5

Program verification
 To prove program correct, we need two parts:

1. For every possible input, the correct answer is
obtained if the program terminates

2. The program always terminates

6

Definition 1:
A program, or program segment, S is said to be partially

correct with respect to the initial assertion p and the final
assertion q if

whenever p is true for the input values of S and S terminates,
then q is true for the output values of S.

The notation p{S}q indicates that the program, or program
segment, S is partially correct with respect to the initial
assertion p and the final assertion q.

7

Some notes and Example
This definition of partial correctness

 has nothing to do with whether a program terminates or not

 is due to Tony Hoare

Example: Show that the program segment

y := 2

z := x + y

is correct with respect to

 initial assertion p: x = 1;

 final assertion q: z = 3.

Solution: p is true x = 1 y := 2 z := 3 partially
correct w.r.t. p and q

8

Rules of inference
Goal: Split the program into a series of subprograms and

show that each subprogram is correct. This is done
through a rule of inference.

 Let us start by taking the program S and splitting it
into 2 subprograms S1 and S2 (S = S1; S2)

 Assume that we have S1 correct w.r.t. p and q (initial
and final assertions)

 Assume that we have S2 correct w.r.t. q and r (initial
and final assertions)

9

Rules of inference (cont.)
 It follows that

“if p is true (S1 executed and terminates) then q is true”

“if q is true (S2 executed and terminates) then r is true”

“thus, if p = true and S = S1; S2 is executed and
terminates then r = true”

This rule of inference is known as the composition rule.

 It is written as:

p {S1} q
q {S2} r

p {S1; S2) r

10

Conditional Statements
Assume that a program segment has the following form:

“if condition then S” where S is a block of statement

Goal: Verify that this piece of code is correct

Strategy:

a) We must show that when p is true and condition is
also true, then q is true after S terminates

b) We also must show that when p is true and condition
is false, then q is true

11

Conditional Statements (cont.)

 We summarize as:

(p condition) {S} q
(p condition) q

p {if condition then S} q

Example: Verify that the following program segment is correct w.r.t.
the initial assertion T and the final assertion y x

if x > y then y:= x

Solution:
a) If T = true and x > y is true then the final assertion y x is true
b) If T = true and x > y is false then x y is true final assertion is

true again

12

If then else
“if condition then S1 else S2”

if condition is true then S1 executes; otherwise S2 executes

This piece of code is correct if:

a) If p = true condition = true q = true after S1 terminates

b) If p = true condition = false q = true after S2 terminates

(p condition) {S1}q
(p condition) {S2}q

p {if condition then S1 else S2) q

13

Example
Check that the following program segment

if x < 0 then

abs := -x

else

abs := x

is correct w.r.t. the initial assertion T and the final
assertion abs = |x|.

Solution:

a) If T = true and (x<0) = true abs := -x; compatible with
definition of abs

b) If T = true and (x<0)= false (x 0) = true abs := x;
also compatible with abs definition.

14

Loop invariants
How to prove codes that contain the while loop:

“while condition S”

An assertion that remains true each time S is a loop invariant, i.e.,

p is a loop invariant if:

(p condition) {S} p is true

If p is a loop invariant, then if p is true before the program
segment is executed, p and condition are true after
termination, if it occurs. We can write the rule of inference as:

(p condition) {S} p

p {while condition S} (condition p)

15

Loop example: factorial
Determine the loop invariant that verifies that the following

program segment terminates with factorial = n! when n 0.

i := 1

factorial := 1

While i < n

begin

i := i + 1

factorial := factorial * i

end

16

Loop example: factorial (cont.)
Solution:

Choose p = (factorial = i! (i n))

a) Prove that p is in fact a loop invariant

b) If p is true before execution, p and condition are true
after termination

c) Prove that the while loop terminates

17

Loop example: factorial (cont.)
a) P is a loop invariant:

Suppose p is true at the beginning of the execution of
the while loop and the while condition holds;

 factorial = i! i < n

inew = i + 1

factorialnew = factorial * (i + 1) = (i + 1)! = inew!

Since i < n inew = i + 1 n

 p true at the end of the execution of the loop

 p is a loop invariant

18

Loop example: factorial (cont.)
b) Before entering the loop, i = 1 n and

factorial :=1 = 1! = i! (i n) (factorial = i!) = true
 p = true
Since p is a loop invariant
 through the inference rule,
if the while loop terminates
 p = true and i < n false i = n and factorial = i! = n!

c) While loop terminates:
Because p is a loop invariant, the rule of inference implies

that if the while loop terminates, it terminates with p
true and with i < n false.

In this case, at the end, factorial = i! and i<=n are true,
but i<n is false, in other words,
i=n and factorial= i!=n!, as desired.

