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Section Summary
 Mathematical Induction

 Examples of Proof by Mathematical Induction

 Mistaken Proofs by Mathematical Induction

 Guidelines for Proofs by Mathematical Induction



Climbing an 
Infinite Ladder

Suppose we have an infinite ladder:
1. We can reach the first rung of the ladder.
2. If we can reach a particular rung of the ladder, 

then we can reach the next rung.

From (1), we can reach the 1st rung.
Then by applying (2), we can reach the 2nd rung.
Applying (2) again, the third rung. 
And so on.
We can apply (2) any number of times to reach any 
particular rung, no matter how high up.

This example motivates proof by 
mathematical induction.



Principle of Mathematical Induction (M.I.)

To prove that P(n) is true n  Z+, we complete these steps:

 Basis Step: Show that P(1) is true.

 Inductive Step: Show that P(k) → P(k + 1) is true k Z+.

To complete inductive step, we assume the inductive hypothesis 
that P(k) holds for arbitrary k Z+ & show that P(k + 1) is true.

Climbing an Infinite Ladder Example:

 BASIS STEP: By (1), we can reach rung 1.

 INDUCTIVE STEP: We assume the inductive hypothesis that we 
can reach rung k. Then by (2), we can reach rung k + 1.

Hence, P(k) → P(k + 1) is true k Z+. 

And we conclude that we can reach every rung on the ladder.



Important Points About Using M.I.

 Mathematical induction can be expressed as the 
rule of inference

where the domain is Z+.

 We don’t assume that P(k) is true k Z+! 

 We show that if P(k) is true,

 then P(k + 1) must also be true. 

 Proofs by mathematical induction do not always 
start at 1. The starting point b can be any integer.

 We will see examples of this soon.

(P(1) ∧ ∀k (P(k) → P(k + 1))) → ∀n P(n),



Validity of Mathematical Induction
Mathematical induction is valid because of the well ordering 
property, which states that every nonempty set of positive integers 
has a least element (see Section 5.2 & Appendix 1).

 Suppose that P(1) holds and P(k)→ P(k + 1) is true k Z+. 

 Assume that n Z+ for which P(n) is false.

 Then the set S  Z+ for which P(n) is false is nonempty. 
 By the well-ordering property, S has a least element, say m.
 We know that m can not be 1 since  P(1) holds. 

 Since m > 1, m – 1 > 0 and m – 1 ÏS, P(m − 1) must be true. 
 But then, P(k)→ P(k + 1),  means P(m) must also be true.
 This contradicts P(m) being false. 
 Hence, P(n) must be true n Z+. 



How Mathematical Induction Works
Consider  an infinite 
sequence  of dominoes, 
labeled 1,2,3, …, where 
each domino is standing. 

We know that the 1st domino is 
knocked down, i.e., P(1) is true .

Let P(n) be the 
proposition that the nth 
domino is knocked over. 

\ all dominos are knocked over,
i.e., P(n) is true n Z+.

We also know that if whenever     
the kth domino is knocked over,
it knocks over the (k + 1)st domino, 
i.e, P(k) → P(k + 1) k Z+.



Proving a Summation Formula by 
Mathematical Induction

Example: Show that:  

Solution:

BASIS STEP: P(1) is true since 1(1 + 1)/2 = 1.

INDUCTIVE STEP: Assume true for P(k).

The inductive hypothesis is

Under this assumption,   

Note: Once we have this 
conjecture, mathematical 
induction can be used to 
prove it correct.

This is precisely the formula if 
you replace n with k+1.



Conjecturing and Proving
Example: Conjecture a formula for the sum of the first n

positive odd integers. Then prove your conjecture.

Conjecture: We have:  1= 1,   1 + 3 = 4,   1 + 3 + 5 = 9, 

1 + 3 + 5 + 7 = 16,      1 + 3 + 5 + 7 + 9 = 25.

We conjecture that the sum of the first n positive odd 
integers is n2, i.e., 

1 + 3 + 5 + ∙∙∙+ (2n − 1) + (2n + 1) =n2 .  



Conjecturing and Proving (cont.)
Example: Conjecture and prove correct a formula for the 

sum of the first n positive odd integers. 

Proof: We use mathematical induction to prove conjecture

BASIS STEP: P(1) is true since 12 = 1.

INDUCTIVE STEP: 

 Assume inductive hypothesis P(k) holds and show P(k + 1).

 Hence, we have shown that P(k + 1) follows from P(k). 

\sum of the first n positive odd integers is n2.

1 + 3 + 5 + ∙∙∙+ (2n − 1) + (2n + 1) =n2 .  

Inductive Hypothesis: 1 + 3 + 5 + ∙∙∙+ (2k − 1)  = k2

1 + 3 + 5 + ∙∙∙+ (2k − 1) + (2k + 1) =[1 + 3 + 5 + ∙∙∙+ (2k − 1)] + (2k + 1)
= k2 + (2k + 1)  (by inductive hypothesis)
= k2 + 2k + 1 = (k + 1) 2



Inequalities
Example 1: Use mathematical induction to prove that

n < 2n  n  N.

Solution: Let P(n) be the proposition that n < 2n.

BASIS STEP: P(0) is true since 0 < 20 = 1.

INDUCTIVE STEP: 

Assume P(k) holds, i.e., k < 2k, for an arbitrary k  N.

We show that P(k + 1) holds.

k + 1 < 2k + 1 ≤ 2k + 2k = 2 ∙ 2k = 2k+1 (0 ≤ k  so 1 ≤ 2k)

\n < 2n holds n.



Inequalities
Example 2: Prove that 2n < n!, n  Z, n ≥ 4.

Solution: Let P(n) be the proposition that 2n < n!.

BASIS STEP: P(4) is true since 24 = 16  < 4! = 24.

INDUCTIVE STEP: Assume P(k) holds, i.e., 2k < k! for an 
arbitrary integer k ≥ 4. We show that P(k + 1) holds: 

2k+1 = 2∙2k  

< 2∙ k! (by the inductive hypothesis)

< (k + 1)k! = (k + 1)! (1<3<k so 2<k+1)

\ 2n < n! holds n  Z, n ≥ 4.

Note that here the basis step is P(4), since P(0), P(1), P(2),  and P(3) are all false.  



Divisibility Results
Example: Show that 3 | n3 − n n  Z+.

Solution: Let P(n) be the proposition that 3 | n3 − n.

BASIS STEP: P(1) is true since 13 − 1 = 0, which is divisible by 3.

INDUCTIVE STEP: Assume P(k): 3 | k3 − k, for an arbitrary k  Z+.

We show P(k + 1): 

(k + 1)3 − (k + 1) = (k3 + 3k2 + 3k + 1) − (k + 1) 

= (k3 − k) + 3(k2 + k)

By inductive hypothesis, 1st term (k3 − k) is divisible by 3 and 2nd

term is divisible by 3 since it is an integer multiplied by 3. 

So by Thm 1 in Section 4.1 , (k + 1)3 − (k + 1) is divisible by 3. 

\ 3 | n3 − n n  Z+.



Number of Subsets of a Finite Set
Example: Use M.I. to show that if S is a finite set and 𝑆 =

𝑛, n  N, then # of subsets of S is 2n.

Solution: Let P(n) be proposition that S has 2n subsets.
 Basis Step: P(0) is true (Æ has only itself as a subset & 20 = 1). 

 Inductive Step: Assume P(k) is true for k  N, arbitrary.

Given T, 𝑇 = 𝑘+1, remove first element “a”:  S = 𝑇 − 𝑎 .

𝑆 = 𝑘 and so has 2k subsets. 

For each subset X of S, there are exactly

two subsets of T: X and X ∪ {a}. 

\#subsets of T is 2*2k = 2k+1

Inductive Hypothesis: For arbitrary k  N, S with 𝑆 = k, then S has 2k subsets.



Tiling Checkerboards
Example: Show that every 2n ×2n

checkerboard with one square removed

can be tiled using right triominoes (->):

Solution: Let P(n) be the proposition that every 2n ×2n

checkerboard with one square removed can be tiled 
using right triominoes. Use M.I.

BASIS STEP:  P(1) is true, because each of the four 2 ×2
boards with a square removed can be tiled using a single 
right triomino (as pictured above).

INDUCTIVE STEP:  Assume P(k) is true for every  2k ×2k

checkerboard, for some k  Z+.

continued →



Tiling Checkerboards

Consider a 2k+1 ×2k+1 checkerboard with one square removed. 
Split this checkerboard into 4 checkerboards of size 2k × 2k, by 
dividing it in ½ in both directions.

Also by the inductive hypothesis, the other three boards can be 
tiled with the square from the corner of the center of the 
original board removed. We can then cover the 3 adjacent 
squares with a triominoe. 

Hence, the entire 2k+1 ×2k+1 checkerboard with one square 
removed can be tiled using right triominoes.

Remove a square from one of the 
four 2k ×2k checkerboards.

By the inductive hypothesis,
this board can be tiled.  

Inductive Hypothesis: For some k  Z+, every 2k ×2k checkerboard with 
one square removed can be tiled using right triominoes.



An Incorrect “Proof” by 
Mathematical Induction
Example: Let P(n) be the statement that every set of n lines 

in the plane, no two of which are parallel, meet in a 
common point. Here is a “proof” that P(n) is true for all 
positive integers n ≥ 2.  

BASIS STEP: The statement P(2) is true because any two lines in 
the plane that are not parallel meet in a common point.

INDUCTIVE STEP: The inductive hypothesis is the statement that 
P(k) is true for k Z, k ≥ 2, i.e., every set of k lines in the plane, 
no two of which are parallel, meet in a common point.

 We must show that if P(k) holds, then P(k + 1) holds, i.e.,  if 
every set of k lines in the plane, no 2 of which are parallel, meet 
in a common point, then every set of k + 1 lines in the plane, no 
two of which are parallel, meet in a common point.

continued →



An Incorrect “Proof” by 
Mathematical Induction

Consider a set  of k + 1 distinct lines in the plane, no two parallel.

By the inductive hypothesis,

 the first k of these lines must meet in a common point p1

 and the last k of these lines meet in a common point p2. 

If p1, p2 are different pts, all lines containing both of them must be the same 
line since two pts determine a line. 

This contradicts assumption that the lines are distinct. 

Hence, p1 = p2 lies on all k + 1 distinct lines, and therefore P(k + 1) holds.

Assuming that  k ≥2, distinct lines meet in a common point, 

 then every k + 1 lines meet in a common pt.

There must be an error in this proof since the conclusion is absurd.

But where is the error?

Inductive Hypothesis: Every set of k lines in the plane, where   
k ≥ 2, no two of which are parallel, meet in a common point.



An Incorrect “Proof” by 
Mathematical Induction

Consider a set  of k + 1 distinct lines in the plane, no two parallel.By the 
inductive hypothesis, the first k of these lines must meet in a common 
point p1 and the last k of these lines meet in a common point p2. 

If p1, p2 are different pts, all lines containing both of them must be the same 
line since two pts determine a line. This contradicts assumption that the 
lines are distinct. Hence, p1 = p2 lies on all k + 1 distinct lines, and 
therefore P(k + 1) holds. Assuming that  k ≥2, distinct lines meet in a 
common point, then every k + 1 lines meet in a common pt.

 Where is the error?

Answer: P(k)→ P(k + 1) only holds for  k ≥3. It is not the case that P(2) 
implies P(3). The 1st two lines must meet in a common point p1 and the 
2nd two must meet in a common point p2.

 They do not have to be the same point since only the 2nd line is common 
to both sets of lines.

Inductive Hypothesis: Every set of k lines in the plane, where   
k ≥ 2, no two of which are parallel, meet in a common point.



Guidelines for Mathematical Induction
1. Express the statement that is to be proved in the form “for all n ≥ b, 

P(n)” for a fixed integer b.
2. Write out the words “Basis Step.” Then show that P(b) is true, taking 

care that the correct value of b is used. This completes the first part 
of the proof.

3. Write out the words “Inductive Step.”
4. State, and clearly identify, the inductive hypothesis, in the form 

“assume that P(k) is true for an arbitrary fixed integer k ≥ b.”
5. State what needs to be proved under the assumption that the 

inductive hypothesis is true. That is, write out what P(k + 1) says.
6. Prove the statement P(k + 1) making use the assumption P(k). Be 

sure that your proof is valid for all integers k with k ≥ b, taking care 
that the proof works for small values of k, including k = b.

7. Clearly identify the conclusion of the inductive step, such as by 
saying “this completes the inductive step.”

8. After completing the basis step and the inductive step, state the 
conclusion, namely that by mathematical induction, P(n) is true for 
all integers n with n ≥ b.


