Number Theory and Cryptography
 Chapter 4

With Question/Answer Animations

Chapter Summary

4.1 Divisibility and Modular Arithmetic
4.2 Integer Representations and Algorithms
4.3 Primes and Greatest Common Divisors
4.4 Solving Congruences
4.5 Applications of Congruences
4.6 Cryptography

Solving Congruences

Section 4.4

Section Summary

- Linear Congruences
- The Chinese Remainder Theorem
- Computer Arithmetic with Large Integers (not in slides, see text)
- Fermat's Little Theorem
- Pseudoprimes
- Primitive Roots and Discrete Logarithms

Linear Congruences

Definition: A congruence of the form

$$
a x \equiv b(\bmod m)
$$

where $m \in Z^{+}, a, b \in Z$, and x is a variable, is a linear congruence.

- Solutions to $a x \equiv b(\bmod m)$ are $x \in Z$ that satisfy congruence.

Definition: $\bar{a} \in Z$ such that $\bar{a} a \equiv 1(\bmod m)$ is an inverse of $a \bmod m$. Example: 5 is an inverse of $3 \bmod 7$ since $5 \cdot 3=15 \equiv 1(\bmod 7)$

- One method of solving linear congruences uses inverse \bar{a}, if it exists.
- Although we can not divide both sides of the congruence by a,
- we can multiply by \bar{a} to solve for x.

Inverse of a modulo m

Theorem 1: If a and m are relatively prime integers, $m>1$, then an inverse of a mod m exists. Furthermore, this inverse is unique modulo m.
(i.e., $\exists!\bar{a} \in 1, \ldots, m-1$ that is an inverse of $a \bmod m$ and every other inverse of $a \bmod m$ is congruent to $\bar{a} \bmod m$.)
Proof: Since $\operatorname{gcd}(a, m)=1$, by Theorem 6 of Section 4.3,
$\exists s, t$ such that $s a+t m=1$ (Bézout coefficients)

- Hence, $s a+t m \equiv 1(\bmod m)$.
- Since $t m \equiv 0(\bmod m)$, it follows that $s a \equiv 1(\bmod m)$
- Consequently, s is an inverse of a modulo m.
- The uniqueness of the inverse is Exercise 7.

Finding Inverses

The Euclidean algorithm and Bézout coefficients gives us a systematic approaches to finding inverses.
Example: Find an inverse of 3 modulo 7.
Solution: Because $\operatorname{gcd}(3,7)=1$, by Theorem 1, an inverse of 3 modulo 7 exists.

- Using the Euclidian algorithm: $7=2 \cdot 3+1$.
- From this equation, we get $-2 \cdot 3+1 \cdot 7=1$, and see that -2 and 1 are Bézout coefficients of 3 and 7 .
- Hence, -2 is an inverse of 3 modulo 7.
- Any integer $\equiv \bmod 7$ is an inverse of $3 \bmod 7$:
- ..., $-16,-2,-9,5,12, \ldots$

Finding Inverses

Example: Find an inverse of 101 modulo 4620.
Solution: First use the Euclidian algorithm to show that $\operatorname{gcd}(101,4620)=1$.

Working Backwards:
$42620=45 \cdot 101+75$
$101=1 \cdot 75+26$
$75=2 \cdot 26+23$
$26=1 \cdot 23+3$
$23=7 \cdot 3+2$
$3=1 \cdot 2+1$
$2=2 \cdot 1$
Since the last nonzero remainder is 1 , $\operatorname{gcd}(101,4260)=1$

$$
\begin{aligned}
& 1=3-1 \cdot 2 \\
& 1=3-1 \cdot(23-7 \cdot 3)=-1 \cdot 23+8 \cdot 3 \\
& 1=-1 \cdot 23+8 \cdot(26-1 \cdot 23)=8 \cdot 26-9 \cdot 23 \\
& 1=8 \cdot 26-9 \cdot(75-2 \cdot 26)=26 \cdot 26-9 \cdot 75 \\
& 1=26 \cdot(101-1 \cdot 75)-9 \cdot 75 \\
& \quad=26 \cdot 101-35 \cdot 75 \\
& \begin{array}{c}
1=26 \cdot 101-35 \cdot(42620-45 \cdot 101) \\
\quad=-35 \cdot 42620+1601 \cdot 101
\end{array}
\end{aligned}
$$

Bézout coefficients : -35 and 1601
1601 is an inverse of 101 modulo 42620

Using Inverses to Solve Congruences

We can solve $a x \equiv b(\bmod m)$ by multiplying both sides by \bar{a}.
Example: Solve $3 x \equiv 4(\bmod 7)$
Solution: We found that -2 is an inverse of 3 modulo 7 (two slides back). Multiply both sides of by -2 giving
$-2 \cdot 3 x \equiv-2 \cdot 4(\bmod 7)$.
Because $-6 \equiv 1(\bmod 7)$ and $-8 \equiv 6(\bmod 7)$, it follows that if x is a solution, then $x \equiv-8 \equiv 6(\bmod 7)$
The solutions are the integers x such that $x \equiv 6(\bmod 7)$, namely,

$$
\ldots,-15,-8,-1,6,13,20 \ldots
$$

Typically, it would suffice to provide 6 , our !representative in $0, \ldots, m-1$

Sun-Tsu's Puzzle

- In the first century, the Chinese mathematician Sun-Tsu asked:

There are certain things whose number is unknown. When divided by 3 , remainder is 2 ; when divided by 5 , remainder is 3 ; when divided by 7 , remainder is 2 . What will be the number of things?

- Translate this puzzle into solving a system of congruences:

$$
\begin{aligned}
& x \equiv 2(\bmod 3) \\
& x \equiv 3(\bmod 5) \\
& x \equiv 2(\bmod 7)
\end{aligned}
$$

- The Chinese Remainder Theorem can be used to solve problem.

The Chinese Remainder Theorem

Theorem 2: (Chinese Remainder Theorem) $m_{1}, m_{2}, \ldots, m_{n} \in Z,>1$, pairwise relatively prime (prp), and $a_{1}, a_{2}, \ldots, a_{n} \in Z$, then

$$
\begin{aligned}
& x \equiv a_{1}\left(\bmod m_{1}\right) \\
& x \equiv a_{2}\left(\bmod m_{2}\right) \\
& \vdots \\
& x \equiv a_{n}\left(\bmod m_{n}\right)
\end{aligned}
$$

has a ! solution modulo $m=m_{1} m_{2} \cdots m_{n}$.
(That is, \exists solution x with $0 \leq x<m$ and all other solutions are congruent modulo m to this solution.)

- Proof: We'll show that solution exists by describing a way to construct solution. Showing that solution is ! is Exercise 30.

The Chinese Remainder Theorem

To construct a solution first let $M_{k}=m / m_{k}$ for $k=1,2, \ldots, n$ and $m=m_{1} m_{2} \cdots m_{n}$. Since $\operatorname{gcd}\left(m_{k}, M_{k}\right)=1$, by Thm $1, \exists y_{k} \in Z$, an inverse of $M_{k} \bmod m_{k}$, such that

$$
M_{k} y_{k} \equiv 1\left(\bmod m_{k}\right) .
$$

Form the sum

$$
x=a_{1} M_{1} y_{1}+a_{2} M_{2} y_{2}+\cdots+a_{n} M_{n} y_{n}
$$

Since $\mathrm{M}_{\mathrm{j}} \equiv 0\left(\bmod m_{\mathrm{k}}\right)$ if $j \neq k$, all terms except $k^{\text {th }}$ term in sum are $\equiv 0 \bmod m_{\mathrm{k}}$. Because $M_{k} y_{k} \equiv 1\left(\bmod m_{k}\right)$, we see that $x \equiv a_{k} M_{k} y_{k} \equiv a_{k}\left(\bmod m_{k}\right)$, for $k=1,2, \ldots, n$. Hence, x is a simultaneous solution to the n congruences:

$$
\begin{gathered}
x \equiv a_{1}\left(\bmod m_{1}\right) \\
x \equiv a_{2}\left(\bmod m_{2}\right) \\
\cdot \\
\cdot \\
x \equiv a_{n}\left(\bmod m_{n}\right)
\end{gathered}
$$

The Chinese Remainder Theorem

Example: Consider the 3 congruences from Sun-Tsu's problem: $x \equiv 2(\bmod 3), x \equiv 3(\bmod 5), x \equiv 2(\bmod 7)$.

- Let $m=3 \cdot 5 \cdot 7=105, M_{1}=m / 3=35, M_{3}=m / 5=21$, $M_{3}=m / 7=15$.
- We see that
- 2 is an inverse of $M_{1}=35$ modulo 3 since $35 \cdot 2 \equiv 2 \cdot 2 \equiv 1(\bmod 3)$
- 1 is an inverse of $M_{2}=21$ modulo 5 since $21 \equiv 1(\bmod 5)$
- 1 is an inverse of $M_{3}=15$ modulo 7 since $15 \equiv 1(\bmod 7)$
- Hence,

$$
\begin{aligned}
& x=a_{1} M_{1} y_{1}+a_{2} M_{2} y_{2}+a_{3} M_{3} y_{3} \\
& =2 \cdot 35 \cdot 2+3 \cdot 21 \cdot 1+2 \cdot 15 \cdot 1=233 \equiv 23(\bmod 105)
\end{aligned}
$$

- We have shown that 23 is the smallest positive integer that is a simultaneous solution. Check it!

Back Substitution

We can also solve systems with pairwise relatively prime moduli by rewriting a \equiv as an equality using Thm 4 of Section 4.1 , substituting the value for the variable into another congruence, and continuing the process until we have worked through all congruences. This method is known as back substitution.
Example: Use the method of back substitution to find all integers x such that

$$
x \equiv 1(\bmod 5), x \equiv 2(\bmod 6), \text { and } x \equiv 3(\bmod 7)
$$

Solution: By Thm 4, the first \equiv can be rewritten as $x=5 t+1$, where $t \in Z$.

- Substituting into the second congruence yields $5 t+1 \equiv 2(\bmod 6)$.
- Solving this tells us that $t \equiv 5(\bmod 6)$.
- Using Theorem 4 again gives $t=6 u+5$ where u is an integer.
- Substituting this back into $x=5 t+1$, gives $x=5(6 u+5)+1=30 u+26$.
- Inserting this into the third equation gives $30 u+26 \equiv 3(\bmod 7)$.
- Solving this congruence tells us that $u \equiv 6(\bmod 7)$.
- By Theorem $4, u=7 v+6$, where v is an integer.
- Substituting this expression for u into $x=30 u+26$, tells us that

$$
x=30(7 v+6)+26=210 u+206
$$

- Translating this back into a congruence we find solution $x \equiv 206(\bmod 210)$.

Fermat's Little Theorem

Thm 3: (Fermat's Little Thm) p prime, $a \in Z, p \nmid a \Rightarrow a^{p-1} \equiv 1 \bmod p$ Furthermore, for every integer a we have $a^{p} \equiv a(\bmod p)$
(proof outlined in Exercise 19)

Fermat's little thm is useful in computing mod p of large powers. Example: Find $7^{222} \bmod 11$.
By Fermat's little thm, $7^{10}=1 \bmod 11$, so $\left(7^{10}\right)^{k}=1 \bmod 11, \forall k \in Z^{+}$.
$\therefore 7^{222}=7^{22 \cdot 10+2}=\left(7^{10}\right)^{22} 7^{2} \equiv(1)^{22} \cdot 49=5 \bmod 11$.

Hence, $7^{222} \bmod 11=5$.

Pseudoprimes

- By Fermat's little theorem $n>2$ is prime, where

$$
2^{n-1} \equiv 1(\bmod n) .
$$

- But if this congruence holds, n may not be prime. Composite integers n such that $2^{n-1} \equiv 1(\bmod n)$ are pseudoprimes to the base 2.
Example: The integer 341 is a pseudoprime to the base 2.

$$
\begin{aligned}
& 341=11 \cdot 31 \\
& 2^{340} \equiv 1(\bmod 341)(\text { see in Exercise } 37)
\end{aligned}
$$

- We can replace 2 by any integer $b \geq 2$.

Definition: Let $b \in Z^{+}$. If n is composite \& $b^{n-1}=1 \bmod n$, then n is a pseudoprime to the base b.

Pseudoprimes

- Given $n \in Z$, such that $2^{n-1} \equiv 1(\bmod n)$:
- If n does not satisfy the congruence, it is composite.
- If n does satisfy the congruence, it is either prime or a pseudoprime to the base 2.
- Doing similar tests with additional bases b, provides more evidence as to whether n is prime.
- Among positive integers not exceeding x, \exists relatively few pseudoprimes compared to primes.
- among the first 10 billion positive \#'s,
- \#pseudoprimes to the base $2 \sim 15 \mathrm{k}$
- \#primes = 455 M

Carmichael Numbers(optional)

\exists composite integers n that pass all tests with bases b such that $\operatorname{gcd}(b, n)=1$.
Definition: A composite integer n that satisfies the congruence $b^{n-1} \equiv 1$ $(\bmod n) \forall b \in Z^{+}$with $\operatorname{gcd}(b, n)=1$ is a Carmichael number.
Example: The integer 561 is a Carmichael number. To see this:

- 561 is composite, since $561=3 \cdot 11 \cdot 13$.
- If $\operatorname{gcd}(b, 561)=1$, then $\operatorname{gcd}(b, 3)=1$, then $\operatorname{gcd}(b, 11)=\operatorname{gcd}(b, 17)=1$.
- Using Fermat's Little Theorem: $b^{2} \equiv 1(\bmod 3), b^{10} \equiv 1(\bmod 11), b^{16} \equiv$ $1(\bmod 17)$.
- Then

$$
\begin{aligned}
& b^{560}=\left(b^{2}\right)^{280} \equiv 1(\bmod 3), \\
& b^{560}=\left(b^{10}\right)^{56} \equiv 1(\bmod 11), \\
& b^{560}=\left(b^{16}\right)^{35} \equiv 1(\bmod 17) .
\end{aligned}
$$

- It follows (see Exercise 29) that $b^{560} \equiv 1(\bmod 561)$ for all positive integers b with $\operatorname{gcd}(b, 561)=1$. Hence, 561 is a Carmichael number.
- Even though there are infinitely many Carmichael numbers, there are other tests (described in the exercises) that form the basis for efficient probabilistic primality testing. (see Chapter 7)

Primitive Roots (optional)

Definition: A primitive root modulo a prime p is an integer r in \mathbf{Z}_{p} such that every nonzero element of \mathbf{Z}_{p} is a power of r.
Example: Since every element of \mathbf{Z}_{11} is a power of 2,2 is a primitive root of 11 .

Powers of 2 modulo 11: $2^{1}=2,2^{2}=4,2^{3}=8,2^{4}=5,2^{5}=10,2^{6}=9,2^{7}=7$, $2^{8}=3,2^{10}=2$.
Example: Since not all elements of \mathbf{Z}_{11} are powers of 3,3 is not a primitive root of 11 .

Powers of 3 modulo $11: 3^{1}=3,3^{2}=9,3^{3}=5,3^{4}=4,3^{5}=1$, and the pattern repeats for higher powers.
Important Fact: There is a primitive root modulo p for every prime number p.

Discrete Logarithms (optional)

Suppose p is prime and r is a primitive root modulo p. If a is an integer between 1 and $p-1$, that is an element of \mathbf{Z}_{p}, there is a unique exponent e such that $r^{e}=a$ in \mathbf{Z}_{p}, that is, $r^{r^{\rho}} \bmod p=a$.
Definition: Suppose that p is prime, r is a primitive root modulo p, and a is an integer between 1 and $p-1$, inclusive. If $r^{e} \bmod p=a$ and $1 \leq e \leq p-1$, we say that e is the discrete logarithm of a modulo p to the base r and we write $\log _{r} a=\mathrm{e}$ (where the prime p is understood).
Example 1: We write $\log _{2} 3=8$ since the discrete logarithm of 3 modulo 11 to the base 2 is 8 as $2^{8}=3$ modulo 11 .
Example 2: We write $\log _{2} 5=4$ since the discrete logarithm of 5 modulo 11 to the base 2 is 4 as $2^{4}=5$ modulo 11 .
There is no known polynomial time algorithm for computing the discrete logarithm of a modulo p to the base r (when given the prime p, a root r modulo p, and a positive integer $a \in \mathrm{Z}_{p}$). The problem plays a role in cryptography as will be discussed in Section 4.6.

