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Primes
Definition:  p  Z, > 1 is prime if the only positive 
factors of p are 1 and p.

(If n  Z, > 1 is not prime, then it is composite.)

Examples:  

7 is prime

9 is composite

What about 37, 43, 51, 59, 67, 143, 561?



The Fundamental Thm of Arithmetic

Theorem: n  Z, > 1 ! product expression of primes 
whose factors are nondecreasing.

Examples:

 100 = 2 ∙ 2 ∙ 5 ∙ 5 = 22 ∙ 52

 641 = 641

 999 = 3 ∙ 3 ∙ 3 ∙ 37 = 33 ∙ 37 

 1024 = 2 ∙ 2 ∙ 2 ∙ 2 ∙ 2 ∙ 2 ∙ 2 ∙ 2 ∙ 2 ∙ 2 = 210

 What about 37, 43, 51, 59, 67, 143, 561?



The Sieve of Erastosthenes

Erastothenes
(276-194 B.C.)

 The Sieve of Erastosthenes can be used to find all 
primes not exceeding a specified n  Z+. For example, 
n = 100.
a. Delete all  multiples of  2 (except 2), then  multiples of 

3, then multiples of 5, and finally 7,

b. the primes up to n = 100 are

{2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43,

47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97}
Note that we can stop at 7 because it is the largest prime smaller 

than

100 = 10

The process is best illustrated using an animation. Pictures after 
deleting multiples of 2, 3, 5 and 7 appear on the next 4 pages. 











Why we can stop at 𝑛
If an integer n is a composite integer, then it 
has a prime divisor less than or equal to √n.

To see this, note that if n = ab, then a ≤ √n or 
b ≤√n.

Trial division, a very inefficient method of 
determining if a number n is prime, is to try 
every integer i ≤√n and see if n is divisible by i. 



Infinitude of Primes
Theorem: infinitely many primes. (Euclid)

Proof:  Assume finitely many primes:  p1 , p2 , ….., pn

 Let q = p1p2∙∙∙ pn + 1

 By the fundamental theorem of arithmetic either q is prime 
or it is a product of primes. 

 But none of the primes pj divides q since if  pj | q, then pj

divides q − p1p2∙∙∙ pn = 1 .

 Hence, prime not on the list p1, p2, ….., pn, contradicting 
the assumption that  p1, p2, ….., pn are all the primes. 

Euclid 
(325 B.C.E. – 265 B.C.E.)

This proof was given by Euclid in The Elements. The proof is considered 
to be one of the most beautiful in all  mathematics.  It is  the first proof 
in The Book, inspired by the famous mathematician Paul Erdős’ 
imagined collection of perfect proofs maintained by God. Paul  Erdős

(1913-1996) 



Mersene Primes
Definition: Prime numbers of the form 2p − 1 , where p is 
prime, are called Mersene primes.

 22 − 1 = 3, 23 − 1 = 7, 25 − 1 = 37 , and 27 − 1 = 127  are 
Mersene primes.

 211 − 1 = 2047 is not a Mersene prime since 2047 = 23∙89.

 There is an efficient test for determining if 2p − 1 is prime.

 The largest known prime numbers are Mersene primes.

 As of mid 2011, 47 Mersene primes were known, the largest  
is 243,112,609 − 1, which has nearly 13 million decimal digits.

 The Great Internet Mersene Prime Search (GIMPS) is a 
distributed computing project to search  for new Mersene
Primes.

http://www.mersenne.org/

While no new Mersene Primes have been found, important 
results were added just a few weeks ago (April 8, 2018).

Marin Mersenne
(1588-1648)

http://www.mersenne.org/


Distribution of Primes
 Mathematicians have been interested in the 

distribution of prime numbers for several centuries.

 Let f (n) = #primes  n.

 In the 19th century, an asymptotic estimate for f was 
found:

Prime Number Theorem: f (n) is Q(n/ln n)

In other words, chance that randomly selected x  {1, …, n} 
is prime is approximately (n/ln n)/n = 1/ln n.



Primes & Arithmetic Progressions
Euclid’s proof that ¥ many primes can be easily adapted to 
show that ¥ many primes in 4k + 3, k = 1,2,… See Exercise 55

 In 19th century Dirchlet showed every arithmetic progression 
ka + b, k = 1,2, …, gcd(a, b) = 1 contains ¥ many primes. 

 Do  arithmetic progressions made up entirely of primes?

 5, 11, 17, 23, 29  is an arithmetic progression of five primes.

 199, 409, 619, 829, 1039, 1249, 1459, 1669, 1879, 2089 is an 
arithmetic progression of ten primes.

 In the 1930s, Erdős  conjectured and in 2006, Green and Tau 
proved that  n  Z, > 1,  arithmetic progression of length 
n made up entirely of primes.

Terence Tao (Born 1975)



Generating Primes
 Large prime generation is of theoretical & practical interest

 Primes with 100’s of digits are important in cryptography (Sect 4.6) 

 So far, ∄simple function f(n) such that f(n) is prime n  Z+. 

 e.g.,  f(n) = n2 − n + 41 is prime for n = 1,2,…, 40. But not for 41. 

 More specifically, ∄polynomial with integer coefficients such 
that  f(n) is prime n  Z+. (See supplementary Exercise 23.)

 Fortunately, we can generate large integers which are almost 
certainly primes. See Chapter 7.



Conjectures about Primes
Even though primes have been studied extensively for centuries, 
many conjectures about them are unresolved, including:

 Goldbach’s Conjecture: Every n  Z, > 2, even, is the sum of two 
primes. It has been verified by computer for n  1.6 ∙1018.  

 ¥ many primes of the form n2 + 1, n  Z+. But it has been 
shown that ¥ many primes or the product of at most two 
primes of that form.

 The Twin Prime Conjecture: ¥ many pairs of twin primes. 
Twin primes are pairs of primes that differ by 2. Examples are 
3 and 5, 5 and 7, 11 and 13, etc. 

 Discovered in September 2016, the current world’s record for 
twin primes are 2996863034895 · 21290000 ± 1,[17] with 388,342 
decimal digits.

https://en.wikipedia.org/wiki/Twin_prime#cite_note-17


Greatest Common Divisor
Definition: a, b  Z, not both zero. The greatest 
common divisor of a and b

gcd(a, b) = max(d  Z, d | a, d | b)

One can find the gcd of small numbers by inspection.

Example: What is the gcd of 24 and 36? 

Solution: gcd(24, 36) = 12

Example: What is the gcd of 17 and 22?

Solution: gcd(17, 22) = 1



Greatest Common Divisor
Definition: a and b are relatively prime if gcd(a, b) = 1. 

Example: 17 and 22

Definition: a1, a2, …, an are pairwise relatively prime (prp) 
if gcd(ai, aj)= 1 whenever 1 ≤ i < j ≤ n.

Example: Determine if 10, 17 & 21 are prp.

Solution: gcd(10,17) = 1, gcd(10,21) = 1,  gcd(17,21) = 1, 
so 10, 17, and 21 are prp.

Example: Determine whether 10, 19, and 24 are prp.

Solution: gcd(10,24) = 2,  so 10, 19, and 24 are not prp.



Finding gcd using Prime Factorizations
Suppose the prime factorizations of a and b are:

Then:

 Formula is valid since integer on right (of = sign) divides 
both a and b. No larger integer can divide both a and b. 

Example:    120 =  23 ∙3 ∙5      500 =  22 ∙53

gcd(120,500) = 2min(3,2) ∙3min(1,0) ∙5min(1,3) = 22 ∙30 ∙51 = 20

 Finding gcd this way is not efficient because ∄ efficient 
algorithm for finding prime factorization



Least Common Multiple
Definition: a, b  Z, not both zero. The least common multiple of a & b

lcm(a, b) = min(d Z, a | d, b | d)

 The lcm can also be computed from the prime factorizations. 

Example:  

lcm(233572, 2433) = 2max(3,4) 3max(5,3) 7max(2,0) = 24 35 72

 The gcd and the lcm are related by:
Theorem 5: Let a, b  Z+. Then

ab = gcd(a, b) ∙ lcm(a, b)
(proof  is Exercise 31)



Euclidean Algorithm
 The Euclidian algorithm is an efficient method for  

computing the gcd.

 It is based on the idea that gcd(a, b) = gcd(b, c) when a > b
and c is the remainder when a is divided by b.

Euclid (325 B.C.E. – 265 B.C.E.)



Euclidean Algorithm
 The Euclidian algorithm is an efficient method for  

computing the gcd.

 It is based on the idea that gcd(a, b) = gcd(b, c) when a > b
and c is the remainder when a is divided by b.

Example: Find  gcd(91, 287):
 287 = 91 ∙ 3 + 14

 91 = 14 ∙ 6 + 7

 14 =  7 ∙ 2 + 0

So gcd(287, 91) = gcd(91, 14) =  gcd(14, 7)  = 7

Euclid (325 B.C.E. – 265 B.C.E.)

Stopping 
condition

Divide 287 by 91

Divide 91 by 14

Divide 14 by 7



Euclidean Algorithm
 The Euclidean algorithm expressed in pseudocode is:

 In Section 5.3, it is shown that the complexity is 

O(log b), where a > b. 

procedure gcd(a, b: positive integers)
x := a
y := b
while   y ≠ 0

r := x mod y
x := y
y := r

return x {gcd(a,b) is x}



Correctness of Euclidean Algorithm 
Lemma 1: Let a = bq + r, where a, b, q, r  Z. Then

gcd(a,b) = gcd(b,r).

Proof:
 Suppose that d divides both a and b. Then d also divides 

a − bq = r (by Theorem 1 of Section 4.1). Hence, any 
common divisor of a and b must also be any  common 
divisor of b and r.

 Suppose that d divides both b and r. Then d also divides 
bq + r = a. Hence, any common divisor of a and b must 
also be a common divisor of b and r.

 \ gcd(a,b) = gcd(b,r).



Correctness of Euclidean Algorithm 
 Suppose that a, b  Z+, a ≥ b. 

Let r0 = a and r1 = b. 

Successive applications of the division 

algorithm yields:

 Eventually, a remainder of zero occurs in the sequence of terms:

a = r0 > r1 > r2 > ∙ ∙ ∙  ≥ 0. 

 The sequence can’t contain more than a terms.

 By Lemma 1 

gcd(a,b) = gcd(r0,r1) = ∙ ∙ ∙ = gcd(rn-1,rn) = gcd(rn , 0) = rn.

 \ gcd is the last nonzero remainder in the sequence of divisions.

r0 = r1q1 + r2 0 ≤ r2 < r1,
r1 = r2q2 + r3 0 ≤ r3 < r2,

∙
∙
∙

rn-2 = rn-1qn-1 + r2 0 ≤ rn < rn-1,
rn-1 = rnqn .



gcd as Linear Combination
Bézout’s Theorem: If a, b  Z+, then  s, t  Z such 
that  gcd(a,b) = sa + tb, 

i.e., the gcd of a and b can be written as a linear 
combination of a and b with integer coefficients.

(proof  in exercises of Section 5.2)

 s, t  Z are Bézout coefficients.

Example: gcd(6,14) = 2  = (−2)∙6 + 1∙14

Étienne Bézout (1730-1783)



Finding gcds as Linear Combinations

 We illustrate the two pass method for finding the 
Bézout coefficients. 

 It first uses the Euclidian algorithm to find the gcd;

 then works backwards to express the gcd as a linear 
combination of the original two integers.

 A one pass method, the extended Euclidean algorithm, 
is developed in the exercises.



Finding gcds as Linear Combinations
Example: Express gcd(252,198) = 18 as a linear combination of 
252 and 198.
Solution: Use the Euclidean algorithm:

i. 252 = 1∙198 + 54
ii. 198 = 3 ∙54 + 36
iii. 54 = 1 ∙36 + 18
iv. 36 = 2 ∙18 

 Solve for the remainders in i to iii
i. 54 = 252 − 1∙198 
ii. 36 = 198 −  3 ∙54
iii. 18 = 54 −  1 ∙36 

 Substituting the 2nd equation into the 3rd yields:
 18 = 54 −  1 ∙(198 −  3 ∙54 )= 4 ∙54 −  1 ∙198 

 Substituting the 1st equation into this new equation yields:
 18 = 4 ∙(252 −  1 ∙198) −  1 ∙198 = 4 ∙252 −  5 ∙198 



Consequences of Bézout’s Theorem
Lemma 2: If a, b, and c are positive integers such that gcd(a, b) = 1
and a | bc, then a | c.
Proof:  Assume gcd(a, b) = 1 and a | bc
 Since gcd(a, b) = 1, by Bézout’s Theorem  there are integers s and t such 

that    
sa + tb = 1.

 Multiplying both sides of the equation by c, yields sac + tbc = c.
 From Theorem 1 of Section 4.1:

a | tbc (part ii) and a divides sac + tbc since a | sac and a|tbc (part i)
 We conclude a | c, since sac + tbc = c.

Lemma 3: If p is prime and  p | a1a2∙∙∙an, then p | ai for some i.
(proof uses mathematical induction; see Exercise 64 of Section 5.1)

 Lemma 3 is crucial in proof of the uniqueness of prime factorizations.



Uniqueness of Prime Factorization
Given n  Z+ , then the prime factorization of n, where the 
primes are in nondecreasing order, is unique.

Proof: (by contradiction) Suppose that the positive integer n can 
be written as a product of primes in two distinct ways:

n = p1p2 ∙∙∙ ps and n = q1q2 ∙∙∙ pt.
 Remove all common primes from the factorizations to get

 By Lemma 3, it follows that         divides          , for some k,
contradicting assumption that          and         are distinct primes.

\ at most one factorization of n into primes in nondecreasing 
order.



Dividing Congruences by an Integer
 Dividing both sides of a valid congruence by an integer 

does not always produce a valid congruence (see Sec 4.1).

 But dividing by an integer relatively prime to the modulus 
does produce a valid congruence: 

Theorem 7: Let m  Z+ and let a, b, c  Z. If 

ac ≡ bc (mod m) and gcd(c, m) = 1, 

then a ≡ b (mod m).

Proof: Since ac ≡ bc (mod m), m | ac − bc = c(a − b)   by 
Lemma 2 and the fact that gcd(c,m) = 1, it follows that   
m | a − b. Hence, a ≡ b (mod m).

Example: 24 ≡ 6 (mod 9), gcd(2,9) = 1, so 12 ≡ 3 (mod 9)


