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Representations of Integers
 The modern world uses decimal, or base 10, notation: 

 965 means 9∙102 + 6∙101 + 5∙100 . 

 We can represent #’s using any base b > 1, b  Z+

 For computing and communications, bases b = 
 2 (binary)

 8 (octal)

 16 (hexadecimal) 

are important

 The ancient
 Mayans used base 20

 Babylonians used base 60.



Base b Representations
 We can use any base b > 1, b  Z+  because of this theorem:

Theorem 1: Let b > 1, b  Z+ . Then if n  Z+, it can be 
expressed uniquely in the form:

n = akbk + ak-1bk-1 + …. + a1b + a0

where k  N, a0,a1,…. ak  N, < b, and ak≠ 0.

(We will prove this using math induction in Section 5.1.)

 aj are digits (or bits in case b = 2).

 The base b representation or expansion is denoted 

(akak-1….a1a0)b.

(We usually omit the subscript for base 10 expansions.)



Binary Representations
Most computers represent integers and do arithmetic 

with binary (base 2), using digits (bits) 0 and 1.

Example: What are the decimals for the following 
binary representations?

a. (11011)2

b. (1 0101 1111)2

Solution: 

a. (11011)2 = 1 ∙24 + 1∙23 + 0∙22 + 1∙21 + 1∙20 =27. 

b. (1 0101 1111)2    = 1∙28 + 0∙27 + 1∙26 + 0∙25 + 1∙24 

+ 1∙23 + 1∙22 + 1∙21 + 1∙20 =351. 



Octal Expansions
The octal expansion (base 8) uses the digits {0,1,…7}.

Example: Find decimal expansions for

a. (111)8 

b. (7016)8

Solution: 

a. 1∙82 + 1∙81 + 1∙80 = 64 + 8 + 1 = 73

b. 7∙83 + 0∙82 + 1∙81 + 6∙80 =3598



Hexadecimal Expansions
Hexadecimal expansion needs 16 digits, but decimals 

provide only 10. So 6 letters are used:

{0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F}

Example: Find decimal expansions for 

a. (E5)16

b. (2AE0B)16

Solution: 

a. (E5)16 = 14∙161 + 5∙160 = 224 + 5 = 229

b. (2AE0B)16 = 2∙164 + 10∙163 + 14∙162 

+ 0∙161 + 11∙160 =175627

dec hex

10 A

11 B

12 C

13 D

14 E

15 F



Decimal to Base  b Conversion
To construct base b expansion of n  Z+:

 Divide n by b

n = bq0 + a0    0 ≤ a0 ≤ b

 The remainder, a0 , is rightmost digit. 

 Next, divide q0 by b (previous quotient is new dividend)

q0 = bq1 + a1    0 ≤ a1 ≤ b

 The remainder, a1, is 2nd digit from right.

 Continue by successively dividing the quotients by b,

 obtaining additional base b digits as the remainder.

 The process terminates when the quotient is 0.

continued →



Algorithm: Constructing Base b Expansions

 q represents the quotient obtained by successive divisions 
by b, starting with q = n.

 The digits in the expansion are the remainders of the 
division given by q mod b.

 The algorithm terminates when q = 0 is reached.

procedure expansion(n, b  Z+, b > 1)
q := n
k := 0
while (q ≠ 0)

ak := q mod b
q := q div b
k := k + 1

return(ak-1 ,…, a1,a0){(ak-1 … a1a0)b is base b expansion of n}



Conversion to octal
Example: Find octal expansion of 12345 

Solution:  Successively divide by 8:

 12345 = 8 ∙ 1543 + 1

 1543 = 8 ∙ 192 + 7

 192 = 8 ∙ 24 + 0

 24 = 8 ∙ 3 + 0

 3 = 8 ∙ 0 + 3 (stop when the quotient is 0)

The digits are the remainders read backwards:

(30071)8



Hex, Octal and Binary Chart

Each octal digit corresponds to a block of 3 binary digits.
Each hexadecimal digit corresponds to a block of 4 binary digits. 
So, conversion between binary, octal, and hexadecimal is easy.

Initial 0s are not shown

D

H

O

B



Conversion within Hex, Octal & Binary 
Example: Find octal and hex expansions of 

(11 1110 1011 1100)2.

Solution: 

 Octal: group into blocks of three adding initial 0s as needed

(011 111 010 111 100)2.

Blocks correspond to 3      7      2 7 4. Hence, solution is

(37274)8.

 Hex: group into blocks of four adding initial 0s as needed

(0011 1110 1011 1100)2.

Blocks correspond to 3 E        B         C. Hence, solution is 

(3EBC)16.



Binary Addition of Integers
 Since computer chips work with binary numbers, 

algorithms for performing operations are important.

 #operations is 4n (2n bit adds, n div’s, n mod’s).

 So in particular, #bit additions is O(n).

procedure add(a = (an-1,an-2,…,a0)2 ,(b = bn-1,bn-2,…,b0)2 ){binary expansions for a,b}

c := 0 (carry from previous addition)

for  j := 0 to n − 1
t := aj + bj + c
c := t div 2
sj := t mod 2

sn := c

return(s = (sn,sn-1,…,s0)2){s, the binary expansion of a + b.}



Binary Multiplication of Integers

 Output will be of length 2n
 7 (1, 1, 1)2  ´ 7 (1, 1, 1)2 = 49 (1, 1, 0, 0, 0, 1)2 

 #additions of bits is O(n2).

 Could easily modify so that inputs are of lengths m, n.

procedure mult(a = (an-1,an-2,…,a0)2 ,(b = bn-1,bn-2,…,b0)2) 
for  j := 0 to n − 1

if bj = 1 then cj = a shifted j places
else cj := 0 {co, c1,…, cn-1 are the partial products}

p := 0
for  j := 0 to n − 1

p := p + cj

return p {p is the value of ab}



Binary Modular Exponentiation
In cryptography, it  is important to be able to find  bn mod m
efficiently, where b, n, and m are large integers.

 Use the binary expansion of n (ak-1,…,a1,ao)2 , to compute bn .

Note that:

 \to compute  bn, compute b, b2, (b2)2 = b4, (b4)2 = b8 , …,       and 
then multiply the terms           in this list, where aj = 1.

Example: Compute 311 using this method.

Solution: Note that 11 = (1011)2 so 311 = 38 32 31 = ((32)2 )2 32 31

= (92 )2 ∙ 9 ∙3 = (81)2 ∙ 9 ∙3 =6561 ∙ 9 ∙3 =117,147.

continued →



Binary Modular Exponentiation Algorithm

 Algorithm successively finds

b mod m, b2 mod m,  b4 mod m, …,         mod m,

 And multiplies together the terms        where aj = 1.

 O((log m)2 log n) bit operations used.

procedure modular exponentiation (b: integer, n = (ak-1ak-2…a1a0)2 , m  Z+)

x := 1

power := b mod m

for  i := 0 to k − 1

if ai= 1 then x := (x∙ power) mod m

power := (power∙ power ) mod m

return x {x equals bn mod m }


