
Chapter 4

With Question/Answer Animations

Copyright © McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill Education.

Chapter Summary
4.1 Divisibility and Modular Arithmetic

4.2 Integer Representations and Algorithms

4.3 Primes and Greatest Common Divisors

4.4 Solving Congruences

4.5 Applications of Congruences

4.6 Cryptography

Section 4.2

Section Summary
 Integer Representations

 Base b Expansions

 Binary Expansions

 Octal Expansions

 Hexadecimal Expansions

 Base Conversion Algorithm

 Algorithms for Integer Operations

Representations of Integers
 The modern world uses decimal, or base 10, notation:

 965 means 9∙102 + 6∙101 + 5∙100 .

 We can represent #’s using any base b > 1, b  Z+

 For computing and communications, bases b =
 2 (binary)

 8 (octal)

 16 (hexadecimal)

are important

 The ancient
 Mayans used base 20

 Babylonians used base 60.

Base b Representations
 We can use any base b > 1, b  Z+ because of this theorem:

Theorem 1: Let b > 1, b  Z+ . Then if n  Z+, it can be
expressed uniquely in the form:

n = akbk + ak-1bk-1 + …. + a1b + a0

where k  N, a0,a1,…. ak  N, < b, and ak≠ 0.

(We will prove this using math induction in Section 5.1.)

 aj are digits (or bits in case b = 2).

 The base b representation or expansion is denoted

(akak-1….a1a0)b.

(We usually omit the subscript for base 10 expansions.)

Binary Representations
Most computers represent integers and do arithmetic

with binary (base 2), using digits (bits) 0 and 1.

Example: What are the decimals for the following
binary representations?

a. (11011)2

b. (1 0101 1111)2

Solution:

a. (11011)2 = 1 ∙24 + 1∙23 + 0∙22 + 1∙21 + 1∙20 =27.

b. (1 0101 1111)2 = 1∙28 + 0∙27 + 1∙26 + 0∙25 + 1∙24

+ 1∙23 + 1∙22 + 1∙21 + 1∙20 =351.

Octal Expansions
The octal expansion (base 8) uses the digits {0,1,…7}.

Example: Find decimal expansions for

a. (111)8

b. (7016)8

Solution:

a. 1∙82 + 1∙81 + 1∙80 = 64 + 8 + 1 = 73

b. 7∙83 + 0∙82 + 1∙81 + 6∙80 =3598

Hexadecimal Expansions
Hexadecimal expansion needs 16 digits, but decimals

provide only 10. So 6 letters are used:

{0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F}

Example: Find decimal expansions for

a. (E5)16

b. (2AE0B)16

Solution:

a. (E5)16 = 14∙161 + 5∙160 = 224 + 5 = 229

b. (2AE0B)16 = 2∙164 + 10∙163 + 14∙162

+ 0∙161 + 11∙160 =175627

dec hex

10 A

11 B

12 C

13 D

14 E

15 F

Decimal to Base b Conversion
To construct base b expansion of n  Z+:

 Divide n by b

n = bq0 + a0 0 ≤ a0 ≤ b

 The remainder, a0 , is rightmost digit.

 Next, divide q0 by b (previous quotient is new dividend)

q0 = bq1 + a1 0 ≤ a1 ≤ b

 The remainder, a1, is 2nd digit from right.

 Continue by successively dividing the quotients by b,

 obtaining additional base b digits as the remainder.

 The process terminates when the quotient is 0.

continued →

Algorithm: Constructing Base b Expansions

 q represents the quotient obtained by successive divisions
by b, starting with q = n.

 The digits in the expansion are the remainders of the
division given by q mod b.

 The algorithm terminates when q = 0 is reached.

procedure expansion(n, b  Z+, b > 1)
q := n
k := 0
while (q ≠ 0)

ak := q mod b
q := q div b
k := k + 1

return(ak-1 ,…, a1,a0){(ak-1 … a1a0)b is base b expansion of n}

Conversion to octal
Example: Find octal expansion of 12345

Solution: Successively divide by 8:

 12345 = 8 ∙ 1543 + 1

 1543 = 8 ∙ 192 + 7

 192 = 8 ∙ 24 + 0

 24 = 8 ∙ 3 + 0

 3 = 8 ∙ 0 + 3 (stop when the quotient is 0)

The digits are the remainders read backwards:

(30071)8

Hex, Octal and Binary Chart

Each octal digit corresponds to a block of 3 binary digits.
Each hexadecimal digit corresponds to a block of 4 binary digits.
So, conversion between binary, octal, and hexadecimal is easy.

Initial 0s are not shown

D

H

O

B

Conversion within Hex, Octal & Binary
Example: Find octal and hex expansions of

(11 1110 1011 1100)2.

Solution:

 Octal: group into blocks of three adding initial 0s as needed

(011 111 010 111 100)2.

Blocks correspond to 3 7 2 7 4. Hence, solution is

(37274)8.

 Hex: group into blocks of four adding initial 0s as needed

(0011 1110 1011 1100)2.

Blocks correspond to 3 E B C. Hence, solution is

(3EBC)16.

Binary Addition of Integers
 Since computer chips work with binary numbers,

algorithms for performing operations are important.

 #operations is 4n (2n bit adds, n div’s, n mod’s).

 So in particular, #bit additions is O(n).

procedure add(a = (an-1,an-2,…,a0)2 ,(b = bn-1,bn-2,…,b0)2){binary expansions for a,b}

c := 0 (carry from previous addition)

for j := 0 to n − 1
t := aj + bj + c
c := t div 2
sj := t mod 2

sn := c

return(s = (sn,sn-1,…,s0)2){s, the binary expansion of a + b.}

Binary Multiplication of Integers

 Output will be of length 2n
 7 (1, 1, 1)2 ´ 7 (1, 1, 1)2 = 49 (1, 1, 0, 0, 0, 1)2

 #additions of bits is O(n2).

 Could easily modify so that inputs are of lengths m, n.

procedure mult(a = (an-1,an-2,…,a0)2 ,(b = bn-1,bn-2,…,b0)2)
for j := 0 to n − 1

if bj = 1 then cj = a shifted j places
else cj := 0 {co, c1,…, cn-1 are the partial products}

p := 0
for j := 0 to n − 1

p := p + cj

return p {p is the value of ab}

Binary Modular Exponentiation
In cryptography, it is important to be able to find bn mod m
efficiently, where b, n, and m are large integers.

 Use the binary expansion of n (ak-1,…,a1,ao)2 , to compute bn .

Note that:

 \to compute bn, compute b, b2, (b2)2 = b4, (b4)2 = b8 , …, and
then multiply the terms in this list, where aj = 1.

Example: Compute 311 using this method.

Solution: Note that 11 = (1011)2 so 311 = 38 32 31 = ((32)2)2 32 31

= (92)2 ∙ 9 ∙3 = (81)2 ∙ 9 ∙3 =6561 ∙ 9 ∙3 =117,147.

continued →

Binary Modular Exponentiation Algorithm

 Algorithm successively finds

b mod m, b2 mod m, b4 mod m, …, mod m,

 And multiplies together the terms where aj = 1.

 O((log m)2 log n) bit operations used.

procedure modular exponentiation (b: integer, n = (ak-1ak-2…a1a0)2 , m  Z+)

x := 1

power := b mod m

for i := 0 to k − 1

if ai= 1 then x := (x∙ power) mod m

power := (power∙ power) mod m

return x {x equals bn mod m }

