Number Theory and Cryptography Chapter 4

With Question/Answer Animations

Copyright © McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill Education.

Chapter Summary

- 4.1 Divisibility and Modular Arithmetic
- 4.2 Integer Representations and Algorithms
- 4.3 Primes and Greatest Common Divisors
- 4.4 Solving Congruences
- 4.5 Applications of Congruences
- 4.6 Cryptography

Integer Representations and Algorithms Section 4.2

Section Summary

- Integer Representations
 - Base *b* Expansions
 - Binary Expansions
 - Octal Expansions
 - Hexadecimal Expansions
- Base Conversion Algorithm
- Algorithms for Integer Operations

Representations of Integers

- The modern world uses *decimal*, or *base* 10, *notation*:
 - 965 means $9 \cdot 10^2 + 6 \cdot 10^1 + 5 \cdot 10^0$.
- We can represent #'s using any base $b > 1, b \in \mathbb{Z}^+$
- For computing and communications, bases *b* =
 - 2 (binary)
 - 8 (octal)
 - 16 (hexadecimal)
 - are important
- The ancient
 - Mayans used base 20
 - Babylonians used base 60.

Base b Representations

 We can use any base b > 1, b ∈ Z⁺ because of this theorem: Theorem 1: Let b > 1, b ∈ Z⁺. Then if n ∈ Z⁺, it can be expressed uniquely in the form:

$$n = a_k b^k + a_{k-1} b^{k-1} + \dots + a_1 b + a_0$$

where $k \in \mathbb{N}$, $a_0, a_1, \dots, a_k \in \mathbb{N}$, < b, and $a_k \neq 0$.

- (We will prove this using math induction in Section 5.1.)
- a_i are *digits* (or bits in case b = 2).
- The base b representation or expansion is denoted

 $(a_k a_{k-1} \dots a_1 a_0)_b.$

(We usually omit the subscript for base 10 expansions.)

Binary Representations

Most computers represent integers and do arithmetic with binary (base 2), using digits (bits) 0 and 1.

Example: What are the decimals for the following binary representations?

- a. $(11011)_2$
- b. $(1\ 0101\ 1111)_2$

Solution:

a. $(11011)_2 = 1 \cdot 2^4 + 1 \cdot 2^3 + 0 \cdot 2^2 + 1 \cdot 2^1 + 1 \cdot 2^0 = 27.$

b. $(1\ 0\ 1\ 0\ 1\ 1\ 1\ 1\ 1\ 1)_2 = 1\cdot 2^8 + 0\cdot 2^7 + 1\cdot 2^6 + 0\cdot 2^5 + 1\cdot 2^4 + 1\cdot 2^3 + 1\cdot 2^2 + 1\cdot 2^1 + 1\cdot 2^0 = 351.$

Octal Expansions

The octal expansion (base 8) uses the digits {0,1,...7}. **Example**: Find decimal expansions for

- a. $(111)_8$
- **b**. (7016)₈
- Solution:
- a. $1 \cdot 8^2 + 1 \cdot 8^1 + 1 \cdot 8^0 = 64 + 8 + 1 = 73$
- **b.** $7 \cdot 8^3 + 0 \cdot 8^2 + 1 \cdot 8^1 + 6 \cdot 8^0 = 3598$

Hexadecimal Expansions

Hexadecimal expansion needs 16 digits, but decimals										
provide only 10. So 6 letters are used:										
{0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F}	dec	hex								
Example : Find decimal expansions for	10	А								
a. $(E5)_{16}$	11	В								
b. $(2AE0B)_{1c}$	12	С								
Solution.	13	D								
(F5) $-14.16^1 \pm 5.16^0 - 224 \pm 5 - 220$	14	E								
$(LJ)_{16} - 14 10 + 3 10 - 224 + 3 - 229$ $(2AEOD) = 21(4 + 101(3 + 141(2)))$	15	F								
$(2AEUB)_{16} = 2.16^{1} + 10.16^{2} + 14.16^{2}$	_									

 $+ 0.16^{1} + 11.16^{0} = 175627$

Decimal to Base b Conversion

To construct base *b* expansion of $n \in \mathbb{Z}^+$:

• Divide *n* by *b*

$$n = bq_0 + a_0 \quad 0 \le a_0 \le b$$

- The remainder, a_0 , is rightmost digit.
- Next, divide q_0 by b (previous quotient is new dividend) $q_0 = bq_1 + a_1 \quad 0 \le a_1 \le b$

• The remainder, a_1 , is 2^{nd} digit from right.

- Continue by successively dividing the quotients by *b*,
 - obtaining additional base *b* digits as the remainder.
- The process terminates when the quotient is 0.

continued \rightarrow

Algorithm: Constructing Base b Expansions

procedure expansion(
$$n, b \in \mathbb{Z}^+, b > 1$$
)
 $q := n$
 $k := 0$
while $(q \neq 0)$
 $a_k := q \mod b$
 $q := q \dim b$
 $k := k + 1$
return $(a_{k-1}, ..., a_1, a_0) \{(a_{k-1} ... a_1 a_0)_b \text{ is base } b \text{ expansion of } n\}$

- *q* represents the quotient obtained by successive divisions by *b*, starting with *q* = *n*.
- The digits in the expansion are the remainders of the division given by *q* **mod** *b*.
- The algorithm terminates when *q* = 0 is reached.

Conversion to octal

Example: Find octal expansion of 12345 **Solution**: Successively divide by 8:

- $12345 = 8 \cdot 1543 + 1$
- $1543 = 8 \cdot 192 + 7$
- $192 = 8 \cdot 24 + 0$
- $24 = 8 \cdot 3 + 0$
- $3 = 8 \cdot \mathbf{0} + \mathbf{3}$ (stop when the quotient is 0)

The digits are the remainders read backwards: $(30071)_8$

Hex, Octal and Binary Chart

Iexadecimal, Octal, and Binary Representation of the Integers 0 through 15.

D	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Η	0	1	2	3	4	5	6	7	8	9	A	В	С	D	Е	F
0	0	1	2	3	4	5	6	7	10	11	12	13	14	15	16	17
В	0	1	10	11	100	101	110	111	1000	1001	1010	1011	1100	1101	1110	1111

Initial 0s are not shown

Each octal digit corresponds to a block of 3 binary digits. Each hexadecimal digit corresponds to a block of 4 binary digits. So, conversion between binary, octal, and hexadecimal is easy.

Conversion within Hex, Octal & Binary

Example: Find octal and hex expansions of (11 1110 1011 1100)₂.

Solution:

- Octal: group into blocks of three adding initial 0s as needed (011 111 010 111 100)₂.
- Blocks correspond to 3 7 2 7 4. Hence, solution is $(37274)_8$.

 $(3EBC)_{16}$.

 Hex: group into blocks of **four** adding initial 0s as needed (0011 1110 1011 1100)₂.
 Blocks correspond to 3 E B C. Hence, solution is

Binary Addition of Integers

• Since computer chips work with binary numbers, algorithms for performing operations are important.

procedure $add(a = (a_{n-1}, a_{n-2}, ..., a_0)_2$, $(b = b_{n-1}, b_{n-2}, ..., b_0)_2$){binary expansions for a, b} c := 0 (carry from previous addition) **for** j := 0 to n - 1 $t := a_j + b_j + c$ c := t **div** 2 $s_j := t$ **mod** 2 $s_n := c$ **return**($s = (s_n, s_{n-1}, ..., s_0)_2$){s, the binary expansion of a + b.}

- #operations is 4n (2n bit adds, n div's, n mod's).
- So in particular, #bit additions is O(n).

Binary Multiplication of Integers

procedure $mult(a = (a_{n-1}, a_{n-2}, ..., a_0)_2, (b = b_{n-1}, b_{n-2}, ..., b_0)_2)$ **for** j := 0 to n - 1 **if** $b_j = 1$ **then** $c_j = a$ shifted j places **else** $c_j := 0$ { $c_0, c_1, ..., c_{n-1}$ are the partial products} p := 0 **for** j := 0 to n - 1 $p := p + c_j$ **return** p {p is the value of ab}

- Output will be of length 2n
 - 7 (1, 1, 1)₂ × 7 (1, 1, 1)₂ = 49 (1, 1, 0, 0, 0, 1)₂
- #additions of bits is $O(n^2)$.
- Could easily modify so that inputs are of lengths m, n.

Binary Modular Exponentiation

In cryptography, it is important to be able to find $b^n \mod m$ efficiently, where b, n, and m are large integers.

Use the binary expansion of n (a_{k-1},...,a₁,a₀)₂, to compute bⁿ.
 Note that:

$$b^{n} = b^{a_{k-1} \cdot 2^{k-1} + \dots + a_1 \cdot 2 + a_0} = b^{a_{k-1} \cdot 2^{k-1}} \cdots b^{a_1 \cdot 2} \cdot b^{a_0}$$

• : to compute b^n , compute b, b^2 , $(b^2)^2 = b^4$, $(b^4)^2 = b^8$, ..., b^2^k and then multiply the terms b^{2^j} in this list, where $a_j = 1$.

Example: Compute 3^{11} using this method. Solution: Note that $11 = (1011)_2$ so $3^{11} = 3^8 \ 3^2 \ 3^1 = ((3^2)^2)^2 \ 3^2 \ 3^1 = (9^2)^2 \cdot 9 \cdot 3 = (81)^2 \cdot 9 \cdot 3 = 6561 \cdot 9 \cdot 3 = 117,147.$

continued \rightarrow

Binary Modular Exponentiation Algorithm

procedure modular exponentiation (b: integer, $n = (a_{k-1}a_{k-2}...a_1a_0)_2$, $m \in \mathbb{Z}^+$) x := 1power := b mod m for i := 0 to k - 1if $a_i = 1$ then $x := (x \cdot power)$ mod m power := (power \cdot power) mod m return $x \{x \text{ equals } b^n \mod m \}$

- Algorithm successively finds
 b mod *m*, *b*² mod *m*, *b*⁴ mod *m*, ..., *b*^{2^{k-1}} mod *m*,
- And multiplies together the terms $b^{2^{j}}$ where $a_{j} = 1$.
- $O((\log m)^2 \log n)$ bit operations used.