Number Theory and Cryptography
 Chapter 4

With Question/Answer Animations

Chapter Summary

4.1 Divisibility and Modular Arithmetic
4.2 Integer Representations and Algorithms
4.3 Primes and Greatest Common Divisors
4.4 Solving Congruences
4.5 Applications of Congruences
4.6 Cryptography

Integer Representations and Algorithms

Section 4.2

Section Summary

- Integer Representations
- Base b Expansions
- Binary Expansions
- Octal Expansions
- Hexadecimal Expansions
- Base Conversion Algorithm
- Algorithms for Integer Operations

Representations of Integers

- The modern world uses decimal, or base 10, notation:
- 965 means $9 \cdot 10^{2}+6 \cdot 10^{1}+5 \cdot 10^{0}$.
- We can represent \#'s using any base $b>1, b \in \mathrm{Z}^{+}$
- For computing and communications, bases $b=$
- 2 (binary)
- 8 (octal)
- 16 (hexadecimal) are important
- The ancient
- Mayans used base 20
- Babylonians used base 60.

Base b Representations

- We can use any base $b>1, b \in \mathrm{Z}^{+}$because of this theorem: Theorem 1: Let $b>1, b \in \mathrm{Z}^{+}$. Then if $n \in \mathrm{Z}^{+}$, it can be expressed uniquely in the form:

$$
n=a_{k} b^{k}+a_{k-1} b^{k-1}+\ldots .+a_{1} b+a_{0}
$$

where $k \in \mathrm{~N}, a_{0}, a_{1}, \ldots . a_{k} \in \mathrm{~N},<b$, and $a_{k} \neq 0$.
(We will prove this using math induction in Section 5.1.)

- a_{j} are digits (or bits in case $b=2$).
- The base b representation or expansion is denoted

$$
\left(a_{k} a_{k-1} \ldots a_{1} a_{0}\right)_{b} .
$$

(We usually omit the subscript for base 10 expansions.)

Binary Representations

Most computers represent integers and do arithmetic with binary (base 2), using digits (bits) 0 and 1.
Example: What are the decimals for the following binary representations?
a. $(11011)_{2}$
b. $(10101 \text { 1111 })_{2}$

Solution:
a. $(11011)_{2}=1 \cdot 2^{4}+1 \cdot 2^{3}+0 \cdot 2^{2}+1 \cdot 2^{1}+1 \cdot 2^{0}=27$.
b. $(101011111)_{2}=1 \cdot 2^{8}+0 \cdot 2^{7}+1 \cdot 2^{6}+0 \cdot 2^{5}+1 \cdot 2^{4}$ $+1 \cdot 2^{3}+1 \cdot 2^{2}+1 \cdot 2^{1}+1 \cdot 2^{0}=351$.

Octal Expansions

The octal expansion (base 8) uses the digits $\{0,1, \ldots 7\}$.
Example: Find decimal expansions for
a. $(111)_{8}$
b. $(7016)_{8}$

Solution:
a. $1 \cdot 8^{2}+1 \cdot 8^{1}+1 \cdot 8^{0}=64+8+1=73$
b. $7 \cdot 8^{3}+0 \cdot 8^{2}+1 \cdot 8^{1}+6 \cdot 8^{0}=3598$

Hexadecimal Expansions

Hexadecimal expansion needs 16 digits, but decimals provide only 10. So 6 letters are used:

$$
\{0,1,2,3,4,5,6,7,8,9, A, B, C, D, E, F\}
$$

Example: Find decimal expansions for
a. $(\mathrm{E} 5)_{16}$
b. $(2 \mathrm{AE} 0 \mathrm{~B})_{16}$

Solution:
a. $(E 5)_{16}=14 \cdot 16^{1}+5 \cdot 16^{0}=224+5=229$ dec hex
b. $(2 \mathrm{AE} 0 \mathrm{~B})_{16}=2 \cdot 16^{4}+10 \cdot 16^{3}+14 \cdot 16^{2}$
10 A

$$
+0 \cdot 16^{1}+11 \cdot 16^{0}=175627
$$

Decimal to Base b Conversion

To construct base b expansion of $n \in \mathrm{Z}^{+}$:

- Divide n by b

$$
n=b q_{0}+a_{0} \quad 0 \leq a_{0} \leq b
$$

- The remainder, a_{0}, is rightmost digit.
- Next, divide q_{0} by b (previous quotient is new dividend)

$$
q_{0}=b q_{1}+a_{1} \quad 0 \leq a_{1} \leq b
$$

- The remainder, a_{1}, is $2^{\text {nd }}$ digit from right.
- Continue by successively dividing the quotients by b,
- obtaining additional base b digits as the remainder.
- The process terminates when the quotient is 0 .

Algorithm: Constructing Base b Expansions

```
procedure expansion \(\left(n, b \in \mathrm{Z}^{+}, b>1\right)\)
\(q:=n\)
\(k:=0\)
while \((q \neq 0)\)
    \(a_{k}:=q \bmod b\)
    \(q:=q \operatorname{div} b\)
    \(k:=k+1\)
\(\operatorname{return}\left(a_{k-1}, \ldots, a_{1}, a_{0}\right)\left\{\left(a_{k-1} \ldots a_{1} a_{0}\right)_{b}\right.\) is base \(b\) expansion of \(\left.n\right\}\)
```

- q represents the quotient obtained by successive divisions by b, starting with $q=n$.
- The digits in the expansion are the remainders of the division given by $q \bmod b$.
- The algorithm terminates when $q=0$ is reached.

Conversion to octal

Example: Find octal expansion of 12345

Solution: Successively divide by 8:

- $12345=8 \cdot 1543+1$
- $1543=8 \cdot 192+7$
- $192=8 \cdot 24+0$
- $24=8 \cdot 3+0$
- $3=8 \cdot \mathbf{0}+\mathbf{3}$ (stop when the quotient is 0)

The digits are the remainders read backwards:
$(30071)_{8}$

Hex, Octal and Binary Chart

Iexadecimal, 0 ctal, and Binary Representation of the Integers 0 through 15.

D	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
H	0	1	2	3	4	5	6	7	8	9	A	B	C	D	E	F
O	0	1	2	3	4	5	6	7	10	11	12	13	14	15	16	17
B	0	1	10	11	100	101	110	111	1000	1001	1010	1011	1100	1101	1110	1111

Initial 0s are not shown
Each octal digit corresponds to a block of 3 binary digits. Each hexadecimal digit corresponds to a block of 4 binary digits. So, conversion between binary, octal, and hexadecimal is easy.

Conversion within Hex, Octal \& Binary

Example: Find octal and hex expansions of

$$
(11111010111100)_{2} .
$$

Solution:

- Octal: group into blocks of three adding initial 0s as needed $(011111010111 \text { 100) })_{2}$.
Blocks correspond to $\begin{array}{lllll}3 & 7 & 2 & 7 & 4\end{array}$. Hence, solution is $(37274)_{8}$.
- Hex: group into blocks of four adding initial 0 s as needed (0011 11101011 1100) $)_{2}$.
Blocks correspond to 3
B
C.

Hence, solution is
$(3 \mathrm{EBC})_{16}$.

Binary Addition of Integers

- Since computer chips work with binary numbers, algorithms for performing operations are important.

```
procedure \(\operatorname{add}\left(a=\left(a_{n-1}, a_{n-2}, \ldots, a_{0}\right)_{2},\left(b=b_{n-1}, b_{n-2}, \ldots, b_{0}\right)_{2}\right)\{\) binary expansions for \(a, b\}\)
\(c:=0\) (carry from previous addition)
for \(j:=0\) to \(n-1\)
        \(t:=a_{j}+b_{j}+c\)
    \(c:=t \operatorname{div} 2\)
    \(s_{j}:=t \bmod 2\)
\(s_{n}:=c\)
\(\operatorname{return}\left(\mathrm{s}=\left(s_{n}, s_{n-1}, \ldots, s_{0}\right)_{2}\right)\{s\), the binary expansion of \(a+b\).
```

- \#operations is $4 n$ ($2 n$ bit adds, n div's, n mod's).
- So in particular, \#bit additions is $O(n)$.

Binary Multiplication of Integers

procedure mult $\left(a=\left(a_{n-1}, a_{n-2}, \ldots, a_{0}\right)_{2},\left(b=b_{n-1}, b_{n-2}, \ldots, b_{0}\right)_{2}\right)$
for $j:=0$ to $n-1$
if $b_{j}=1$ then $c_{j}=a$ shifted j places
else $c_{j}:=0\left\{c_{0}, c_{1}, \ldots, c_{n-1}\right.$ are the partial products $\}$
$p:=0$
for $j:=0$ to $n-1$
$p:=p+c_{j}$
return $p\{\mathrm{p}$ is the value of $a b\}$

- Output will be of length $2 n$
- $7(1,1,1)_{2} \times 7(1,1,1)_{2}=49(1,1,0,0,0,1)_{2}$
- \#additions of bits is $O\left(n^{2}\right)$.
- Could easily modify so that inputs are of lengths m, n.

Binary Modular Exponentiation

In cryptography, it is important to be able to find $b^{n} \bmod m$ efficiently, where b, n, and m are large integers.

- Use the binary expansion of $n\left(a_{k-1}, \ldots, a_{1}, a_{0}\right)_{2}$, to compute b^{n}. Note that:

$$
b^{n}=b^{a_{k-1} \cdot 2^{k-1}+\cdots+a_{1} \cdot 2+a_{0}}=b^{a_{k-1} \cdot 2^{k-1}} \cdots b^{a_{1} \cdot 2} \cdot b^{a_{0}}
$$

- \therefore to compute b^{n}, compute $b, b^{2},\left(b^{2}\right)^{2}=b^{4},\left(b^{4}\right)^{2}=b^{8}, \ldots, b^{2^{k}}$ and then multiply the terms $b^{2^{j}}$ in this list, where $a_{j}=1$.

Example: Compute 3^{11} using this method.
Solution: Note that $11=(1011)_{2}$ so $3^{11}=3^{8} 3^{2} 3^{1}=\left(\left(3^{2}\right)^{2}\right)^{2} 3^{2} 3^{1}$
$=\left(9^{2}\right)^{2} \cdot 9 \cdot 3=(81)^{2} \cdot 9 \cdot 3=6561 \cdot 9 \cdot 3=117,147$.
continued \rightarrow

Binary Modular Exponentiation Algorithm

procedure modular exponentiation (b: integer, $\left.n=\left(a_{k-1} a_{k-2} \ldots a_{1} a_{0}\right)_{2}, m \in \mathrm{Z}^{+}\right)$
$x:=1$
power := $b \bmod m$
for $i:=0$ to $k-1$
if $a_{i}=1$ then $x:=(x \cdot$ power $) \bmod m$
power := (power•power) $\bmod m$
return $x\left\{x\right.$ equals $\left.b^{n} \bmod m\right\}$

- Algorithm successively finds
$b \bmod m, b^{2} \bmod m, b^{4} \bmod m, \ldots, b^{2^{k-1}} \bmod m$,
- And multiplies together the terms $b^{2^{j}}$ where $a_{j}=1$.
- $O\left((\log m)^{2} \log n\right)$ bit operations used.

