Number Theory and Cryptography
 Chapter 4

With Question/Answer Animations

Chapter Overview

- Number theory is the study of integers \& their properties.
- Key ideas include divisibility and primality.
- Representations of integers, including binary and hexadecimal, may be considered part of number theory.
- Due to its beauty, accessibility, and wealth of open questions, number theory has attracted many mathematicians.
- In our exploration of number theory, we'll develop many of the proof methods and strategies introduced in chapter 1.
- Mathematicians consider number theory to be pure mathematics, but it has important applications to computer science and cryptography (Sections 4.5 and 4.6).

Chapter Summary

4.1 Divisibility and Modular Arithmetic
4.2 Integer Representations and Algorithms
4.3 Primes and Greatest Common Divisors
4.4 Solving Congruences
4.5 Applications of Congruences
4.6 Cryptography

Divisibility and Modular Arithmetic

Section 4.1

Section Summary

- Division
- Division Algorithm
- Modular Arithmetic

Definition of Divisibility

If a and b are integers with $a \neq 0$, then a divides b if $\exists c \in$ Z such that $b=a c$, i.e., if $b / a \in Z$.

- When a divides b we say that a is a factor or divisor of b and that b is a multiple of a.
- The notation $a \mid b$ denotes that a divides b.
- If a does not divide b, we write $a \nmid b$.

Exercise: Determine if $3 \mid 7$ and if $3 \mid 12$.
$3 \nmid 7$ ($7 / 3$ is not an integer)
but $3 \mid 12(12 / 3=4)$

Properties of Divisibility

Theorem 1: Let $a \neq 0, b, c \in Z$.
i. If $a \mid b$ and $a \mid c$, then $a \mid(b+c)$;
ii. If $a \mid b$, then $a \mid \mathrm{bc} \forall c \in Z$;
iii. If $a \mid b$ and $b \mid c$, then $a \mid c$.

Proof: (i) If $a \mid b$ and $a \mid c$, then $\exists s, t \in Z$ with $b=a s$ and $c=a t$. Hence,

$$
b+c=a s+a t=a(s+t) . \quad \therefore a \mid(b+c) .
$$

(Exercises 3 and 4 ask for proofs of parts (ii) and (iii).)

Corollary: If $a \neq 0, b, c \in Z$, such that $a \mid b$ and $a \mid c$, then

$$
a \mid m b+n c \text { if } m, n \in Z .
$$

Show how it follows easily from (ii) and (i) of Theorem 1.

Division Algorithm

When an integer is divided by a positive integer, there is a quotient and a remainder. This "Division Algorithm," is really a theorem.
Division Algorithm: If $a \in Z \& d \in Z^{+}$, then $\exists!q r$, with $0 \leq \mathrm{r}<d$, such that $a=d q+r$ (proved in Section 5.2).

	$\begin{aligned} & \text { 흥 } \\ & \stackrel{N}{\bar{Z}} \end{aligned}$		-	Definitions of Functions div and mod $\begin{aligned} & q=a \operatorname{div} d \\ & r=a \bmod d \end{aligned}$

Examples:

$$
r=a \boldsymbol{\operatorname { m o d }} d
$$

- What are quotient and remainder when 101 is divided by 11 ? Solution: $101 \operatorname{div} 11=9$ and $101 \bmod 11=2$.
- What are quotient and remainder when -11 is divided by 3 ?

Solution: $-11 \operatorname{div} 3=-4$ and $-11 \bmod 3=1$.

Definition of Congruence Relation

If $a, b \in Z, m \in Z^{+}$, then a is congruent to b modulo m if $m \mid a-b . \quad$ (m is its modulus)

- We write $a \equiv b(\bmod m)$
- Two integers are congruent mod m if and only if they have the same remainder when divided by m.
- If a is not congruent to b modulo m, we write

$$
a \not \equiv b(\bmod m)
$$

Example: Determine if $17 \equiv 5(\bmod 6) \&$ if $24 \equiv 14(\bmod 6)$ Solution:

- $17 \equiv 5(\bmod 6)$ because 6 divides $17-5=12$.
- $24 \not \equiv 14(\bmod 6)$ since $24-14=10$ is not divisible by 6 .

More on Congruences

Theorem 4: Let $a, b \in Z, m \in Z^{+} a \equiv b(\bmod m)$ if and only if $\exists k \in Z$ such that $a=b+k m$. Proof:
$a \equiv b(\bmod m)$
iff $m \mid a-b$
iff $\exists k \in Z$ such that $a-b=k m$
iff $\exists k \in Z$ such that $a=b+k m$

The Relationship between

$(\bmod m)$ and $\bmod m$ Notations

- "mod" in $a \equiv b(\bmod m)$ and $a \bmod m=b$ are different.
- $a \equiv b(\bmod m)$ is a relation on the set of integers.
- In $a \bmod m=b$, the notation mod denotes a function.
- The relationship between these notations is made clear by:

Theorem 3: Let $a, b \in Z, m \in Z^{+}$. Then $a \equiv b(\bmod m)$ iff $a \bmod m=b \bmod m$.
(Proof in the exercises)

Congruences of Sums and Products

Theorem 5: If $a, b, c, d \in Z, m \in Z^{+}, a \equiv b, c \equiv d(\bmod$ $m)$, then $a+c \equiv b+d(\bmod m)$ and $a c \equiv b d(\bmod m)$
Proof: Because $a \equiv b, c \equiv d(\bmod m)$, by Theorem 4
$\exists s, t$ with $b=a+s m$ and $d=c+t m$. So

- $b+d=(a+s m)+(c+t m)=(a+c)+m(s+t)$ and
- $b d=(a+s m)(c+t m)=a c+m(a t+c s+s t m)$.
$\therefore a+c \equiv b+d(\bmod m)$ and $a c \equiv b d(\bmod m)$.
Example: Because $7 \equiv 2(\bmod 5)$ and $11 \equiv 1(\bmod 5)$,

$$
\begin{aligned}
& 18=7+11 \equiv 2+1=3(\bmod 5) \\
& 77=7 \cdot 11 \equiv 2 \cdot 1=2(\bmod 5)
\end{aligned}
$$

Algebraic Manipulation of Congruences

- Multiplying or adding to both sides preserves validity:

$$
\begin{aligned}
& \text { If } a \equiv b(\bmod m) \text { holds and } c \in Z \text { then } \\
& \qquad c \cdot a \equiv c \cdot b(\bmod m) \text { and } c+a \equiv c+b(\bmod m)
\end{aligned}
$$

hold by Theorem 5 with $d=c$.

- Dividing does not always produce a valid congruence.

Example: The congruence $14 \equiv 8(\bmod 6)$ holds. But dividing both sides by 2 does not produce a valid congruence since $14 / 2=7$ and $8 / 2=4$, but $7 \not \equiv 4(\bmod 6)$. See Section 4.3 for conditions when division is ok.

Computing mod m for \cdot and +

Use the following to compute the remainder of product or sum when divided by m :
Corollary: If $a, b \in Z, m \in Z^{+}$, then
$(a+b)(\bmod m)=((a \bmod m)+(b \bmod m)) \bmod m$ and
$a b \bmod m=((a \bmod m)(b \bmod m)) \bmod m$.
(proof in text)

Definitions: Arithmetic Modulo m

Let \mathbf{Z}_{m} be the set of nonnegative integers less than m :

$$
\{0,1, \ldots ., m-1\}
$$

- addition modulo $m+_{m}$ is $a+_{m} b=(a+b) \bmod m$.
- multiplication modulo $m{ }_{m}$ is $a{ }_{m} b=(a \cdot b) \bmod m$.

Using these operations is doing arithmetic modulo m.
Example: Find $7{ }_{+_{11}} 9$ and $7 \cdot{ }_{11} 9$.
Solution: Using the definitions above:

- $7{ }_{11} 9=(7+9) \bmod 11=16 \bmod 11=5$
- $7 \cdot{ }_{11} 9=(7 \cdot 9) \bmod 11=63 \bmod 11=8$

Arithmetic Modulo m

$+_{m}$ and ${ }_{m}$ satisfy many of same props as ordinary + and \cdot.

- Closure: If $a, b \in \mathbf{Z}_{m}$, then $a+_{m} b \in \mathbf{Z}_{m}$ and $a \cdot_{m} b \in \mathbf{Z}_{m}$ as well.
- Associativity: If $a, b, c \in \mathbf{Z}_{m}$, then $\left(a+_{m} b\right)+_{m} c=a+_{m}\left(b+_{m} c\right)$ and $\left(a \cdot_{m} b\right) \cdot{ }_{m} c=a \cdot_{m}\left(b{ }_{m} c\right)$.
- Commutativity: If $a, b \in \mathbf{Z}_{m}$, then

$$
a+_{m} b=b+_{m} a \text { and } a{ }_{m} b=b \cdot{ }_{m} a .
$$

- Identity: 0 and 1 are identity elements for + and $* \bmod m$:
- If $a \in \mathbf{Z}_{m}$, then $a+_{m} 0=a$ and $a{ }_{m} 1=a$.
- $a \neq 0 \in \mathbf{Z}_{m} \Rightarrow m-a$ is the additive inverse of $a \bmod m$.
- $a+_{m}(m-a)=0$ and $0+_{m} 0=0$ (0 is its own add inv.)
- Distributivity: If a, b, and c belong to \mathbf{Z}_{m}, then
- $a \cdot_{m}\left(b+_{m} c\right)=\left(a \cdot_{m} b\right)+_{m}\left(a{ }_{m} c\right)$
- $\left(a+{ }_{m} b\right) \cdot{ }_{m} c=\left(a \cdot{ }_{m} c\right)+_{m}\left(b \cdot{ }_{m} c\right)$

Arithmetic Modulo m (cont.)

- Exercises 42-44 ask for proofs of these properties.
- Multiplicative inverses have not been included since they do not always exist.
- For example, there is no multiplicative inverse of 2 mod 6.
- Existence of an inverse is closely tied to existence of division already mentioned, as we will see in section 4.4.

