Number Theory and Cryptography Chapter 4

With Question/Answer Animations

Copyright © McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill Education.

Chapter Overview

- *Number theory* is the study of **integers** & their properties.
- Key ideas include **divisibility** and **primality**.
- Representations of integers, including binary and hexadecimal, may be considered part of number theory.
- Due to its beauty, accessibility, and wealth of open questions, number theory has attracted many mathematicians.
- In our exploration of number theory, we'll develop many of the proof methods and strategies introduced in chapter 1.
- Mathematicians consider number theory to be **pure** mathematics, but it has important **applications** to computer science and cryptography (Sections 4.5 and 4.6).

Chapter Summary

4.1 Divisibility and Modular Arithmetic
4.2 Integer Representations and Algorithms
4.3 Primes and Greatest Common Divisors
4.4 Solving Congruences
4.5 Applications of Congruences
4.6 Cryptography

Divisibility and Modular Arithmetic Section 4.1

Section Summary

- Division
- Division Algorithm
- Modular Arithmetic

Definition of Divisibility

If *a* and *b* are integers with $a \neq 0$, then *a divides b* if $\exists c \in Z$ such that b = ac, i.e., if $b/a \in Z$.

- When *a* divides *b* we say that *a* is a *factor* or *divisor* of *b* and that *b* is a multiple of *a*.
- The notation *a* | *b* denotes that *a* divides *b*.
- If *a* does not divide *b*, we write $a \nmid b$.

Exercise: Determine if 3 | 7 and if 3 | 12.

3 ł 7 (7/3 is not an integer)

but 3 | 12 (12/3 = 4)

Properties of Divisibility

Theorem 1: Let $a \neq 0, b, c \in Z$.

- i. If $a \mid b$ and $a \mid c$, then $a \mid (b + c)$;
- ii. If $a \mid b$, then $a \mid bc \forall c \in Z$;
- iii. If $a \mid b$ and $b \mid c$, then $a \mid c$.

Proof: (i) If $a \mid b$ and $a \mid c$, then $\exists s, t \in Z$ with b = as and c = at. Hence,

b + c = as + at = a(s + t). $\therefore a \mid (b + c)$.

(Exercises 3 and 4 ask for proofs of parts (ii) and (iii).)

Corollary: If $a \neq 0$, $b, c \in Z$, such that $a \mid b$ and $a \mid c$, then $a \mid mb + nc$ if $m, n \in Z$.

Show how it follows easily from (ii) and (i) of Theorem 1.

Division Algorithm

When an integer is divided by a positive integer, there is a quotient and a remainder. This "Division Algorithm," is really a theorem.

Division Algorithm: If $a \in Z \& d \in Z^+$, then $\exists !q r$, with $0 \leq r < d$,

such that a = d q + r (proved in Section 5.2).

quotient remainder

Definitions of Functions **div** and **mod**

 $q = a \operatorname{\mathbf{div}} d$ $r = a \operatorname{\mathbf{mod}} d$

Examples:
What are quotient and remainder when 101 is divided by 11?

Solution: 101 div 11 = 9 and 101 mod 11 = 2.

What are quotient and remainder when -11 is divided by 3?
 Solution: -11 div 3 = -4 and -11 mod 3 = 1.

Definition of Congruence Relation

- If $a, b \in Z, m \in Z^+$, then a is congruent to b modulo mif $m \mid a - b$. (m is its modulus)
- We write $a \equiv b \pmod{m}$
- Two integers are congruent mod *m* if and only if they have the same remainder when divided by *m*.
- If *a* is not congruent to *b* modulo *m*, we write $a \not\equiv b \pmod{m}$

Example: Determine if $17 \equiv 5 \pmod{6}$ & if $24 \equiv 14 \pmod{6}$ **Solution**:

- $17 \equiv 5 \pmod{6}$ because 6 divides 17 5 = 12.
- $24 \not\equiv 14 \pmod{6}$ since 24 14 = 10 is not divisible by 6.

More on Congruences

Theorem 4: Let $a, b \in Z, m \in Z^+ a \equiv b \pmod{m}$ if and only if $\exists k \in Z$ such that a = b + km.

Proof:

- $a \equiv b \pmod{m}$
- iff $m \mid a b$
- iff $\exists k \in Z$ such that a b = km
- iff $\exists k \in Z$ such that a = b + km

The Relationship between

(mod m) and mod m Notations

- "mod" in $a \equiv b \pmod{m}$ and $a \mod m = b$ are different.
 - $a \equiv b \pmod{m}$ is a relation on the set of integers.
 - In *a* **mod** *m* = *b*, the notation **mod** denotes a function.
- The relationship between these notations is made clear by: **Theorem 3**: Let $a, b \in Z, m \in Z^+$. Then $a \equiv b \pmod{m}$ iff $a \mod m = b \mod m$.

(Proof in the exercises)

Congruences of Sums and Products

Theorem 5: If *a*, *b*, *c*, $d \in Z$, $m \in Z^+$, $a \equiv b$, $c \equiv d \pmod{m}$, *m*), then $a + c \equiv b + d \pmod{m}$ and $ac \equiv bd \pmod{m}$ **Proof**: Because $a \equiv b$, $c \equiv d \pmod{m}$, by Theorem 4 $\exists s, t \pmod{b} = a + sm \text{ and } d = c + tm$. So • b + d = (a + sm) + (c + tm) = (a + c) + m(s + t) and

• b d = (a + sm) (c + tm) = ac + m(at + cs + stm).

 $\therefore a + c \equiv b + d \pmod{m}$ and $ac \equiv bd \pmod{m}$.

Example: Because $7 \equiv 2 \pmod{5}$ and $11 \equiv 1 \pmod{5}$, $18 = 7 + 11 \equiv 2 + 1 = 3 \pmod{5}$ $77 = 7 \cdot 11 \equiv 2 \cdot 1 = 2 \pmod{5}$

Algebraic Manipulation of Congruences

• Multiplying or adding to both sides preserves validity: If $a \equiv b \pmod{m}$ holds and $c \in Z$ then

 $c \cdot a \equiv c \cdot b \pmod{m}$ and $c + a \equiv c + b \pmod{m}$ hold by Theorem 5 with d = c.

Dividing does not always produce a valid congruence.
 Example: The congruence 14 ≡ 8 (mod 6) holds. But dividing both sides by 2 does not produce a valid congruence since 14/2 = 7 and 8/2 = 4, but 7 ≢ 4 (mod 6). See Section 4.3 for conditions when division is ok.

Computing mod m for · and +

Use the following to compute the remainder of product or sum when divided by *m*:

Corollary: If $a, b \in Z, m \in Z^+$, then $(a + b) \pmod{m} = ((a \mod m) + (b \mod m)) \mod m$ and $ab \mod m = ((a \mod m) (b \mod m)) \mod m.$

(proof in text)

Definitions: Arithmetic Modulo m

Let \mathbb{Z}_m be the set of nonnegative integers less than m: {0,1, ..., m-1}

- addition modulo m +_m is a +_m b = (a + b) mod m.
 multiplication modulo m ·_m is a ·_m b = (a · b) mod m.
- Using these operations is doing *arithmetic modulo m*. **Example**: Find 7 +₁₁ 9 and 7 ·₁₁ 9. **Solution**: Using the definitions above:

Solution: Using the definitions above:

- $7 +_{11} 9 = (7 + 9) \mod 11 = 16 \mod 11 = 5$
- $7 \cdot_{11} 9 = (7 \cdot 9) \mod 11 = 63 \mod 11 = 8$

Arithmetic Modulo m

+_{*m*} and ·_{*m*} satisfy many of same props as ordinary + and ·. • *Closure*: If *a*, *b* ∈ \mathbb{Z}_m , then *a* +_{*m*}*b* ∈ \mathbb{Z}_m and *a* ·_{*m*}*b* ∈ \mathbb{Z}_m as well. • *Associativity*: If *a*, *b*, *c* ∈ \mathbb{Z}_m , then

 $(a +_m b) +_m c = a +_m (b +_m c)$ and $(a \cdot_m b) \cdot_m c = a \cdot_m (b \cdot_m c)$. • Commutativity: If $a, b \in \mathbb{Z}_m$, then

 $a +_m b = b +_m a$ and $a \cdot_m b = b \cdot_m a$.

• *Identity*: 0 and 1 are identity elements for + and * mod *m*:

• If
$$a \in \mathbb{Z}_m$$
, then $a +_m 0 = a$ and $a \cdot_m 1 = a$.

a≠0 ∈ Z_m⇒ *m*−*a* is the *additive inverse* of *a* mod *m*. *a* +_m(*m*−*a*) = 0 and 0 +_m0 = 0 (0 is its own add inv.) *Distributivity*: If *a*, *b*, and *c* belong to Z_m, then

•
$$a \cdot_m (b +_m c) = (a \cdot_m b) +_m (a \cdot_m c)$$

• $(a +_m b) \cdot_m c = (a \cdot_m c) +_m (b \cdot_m c)$

Arithmetic Modulo m (cont.)

- Exercises 42-44 ask for proofs of these properties.
- Multiplicative inverses have not been included since they do not always exist.
 - For example, there is no multiplicative inverse of 2 mod 6.
 - Existence of an inverse is closely tied to existence of division already mentioned, as we will see in section 4.4.