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Chapter Summary
 Algorithms 

 Example Algorithms 

 Algorithmic Paradigms

 Growth of Functions

 Big-O and other Notation

 Complexity of Algorithms



Section 3.3



Section Summary
 Time Complexity

 Worst-Case Complexity

 Algorithmic Paradigms

 Understanding the Complexity of Algorithms



The Complexity of Algorithms
 Given problem, algorithm and input of a particular 

size, how efficient is algorithm for solving problem?

 In particular

1. how much time does algorithm use?

2. how much computer memory?

 When we analyze 

1. time, we are finding time complexity;

2. computer memory, we find its space complexity.



Our focus is Time Complexity
 In both 2440 and 2540, we focus on time complexity.

(You may find space complexity treated in other courses.)

 We measure time complexity as #operations needed & 
use big-O, big-Q notation.

 We may use this analysis to
1. to see how practical it is to use algorithm with input of 

a particular size.

2. compare efficiency of different algorithms for solving 
same problem.

 We ignore implementation details, e.g.,
 data structures

 hardware and software platforms



Time Complexity
 To analyze time complexity, we determine #operations, e.g., 

 comparisons;

 arithmetic operations (addition, multiplication, etc.).

 We ignore “house keeping” aspects.

 If we determine 
 #operations needed

 time needed for basic operations

 then we could estimate actual time a computer needs.

 We focus on worst-case time complexity of an algorithm
which provides an upper bound on #operations needed.

 On occasion we find average-case complexity:
 average #operations used over all inputs of particular size.



Example: analysis of “max”
Describe time complexity of “max”, which finds 

the maximum element in a finite sequence.
procedure max(a1, a2, …., an: integers)

max := a1

for i := 2 to n
if max < ai then max := ai

return max{max is the largest element}

Solution: Count #comparisons.
• The max < ai comparison is made n − 1 times.
• Each time i is incremented, a test is made to see if i ≤ n.
• One last comparison determines that i > n.
• Exactly 2(n − 1) + 1 = 2n − 1 comparisons are made.

Hence, the time complexity of the algorithm is  Θ(n).



Example: Linear Search
Determine worst-case complexity of linear search.
procedure linear search(x:integer, a1, a2, …,an: distinct integers)

i := 1

while (i ≤ n and x ≠ ai)

i := i + 1

if i ≤ n then location := i

else location := 0

return location{location is the subscript of the term that equals x, or is 0 if x is not found}

Solution: Count #comparisons.
• If x is in list, then loop will exit early Þ fewer comparisons
• Thus, we assume that x is not in the list.
• For each pass of loop, 2 comparisons are made; i ≤ n and x ≠ ai .
• To exit loop, comparison n + 1 ≤ n is made.
• After the loop, one more n + 1 ≤ n comparison is made. 

So in worst case, 2n + 2 comparisons are made.
\complexity is Θ(n).



Example: Linear Search (cont.)
Determine average-case complexity of linear search.
procedure linear search(x:integer, a1, a2, …,an: distinct integers)

i := 1

while (i ≤ n and x ≠ ai)

i := i + 1

if i ≤ n then location := i

else location := 0

return location{location is the subscript of the term that equals x, or is 0 if x is not found}

Solution: This time we assume that x is in list, say in jth location, i.e., x = aj

• For each pass of loop, 2 comparisons are made: i ≤ n and x ≠ ai .
• To exit loop, comparison j ≤ n (T) is made as well as x ≠ aj (F).
• After the loop, one more j ≤ n comparison is made.
So 2j + 1 comparisons are made. j could be any of 1,.., n and hence,

ave =
1

𝑛
σ𝑗=1

𝑛 2𝑗 + 1 =
1

𝑛
2 σ𝑗=1

𝑛 𝑗 + 𝑛 =
1

𝑛
2

𝑛(𝑛+1)

2
+ 𝑛 = 𝑛 + 2

\average-case complexity is Θ(n). (For those don’t like S, see next slide.)



Example: Linear Search (cont.)

 For those who do not like to work with S:

 From now on, “complexity” will mean 

“worst-case time complexity” 

unless otherwise stated.



Example: Binary Search 
Find complexity of binary search in terms of #comparisons.

procedure binary search(x: integer, a1,a2,…, an: increasing integers)
i := 1 {i is the left endpoint of interval}
j := n {j is right endpoint of interval}
while i < j

m := ⌊(i + j)/2⌋
if x > am then i := m + 1
else j := m

if x = ai then location := i
else location := 0
return location{location is the subscript i of the term ai equal to x, or 0 if x is not found}

Solution:  Assume for moment that n = 2k elements. Note that k = log n.  
• Two comparisons are made for each pass:   i < j, and x > am .
• Before 1st iteration, size of list is 2k, then 2k-1 , 2k-2 & so on until size of list is 21 = 2. 
• Loop exits when |list| is 20 = 1 & then x is compared with single remaining element.  
• Hence, 2k + 2 = 2 log n + 2 comparisons are made.
• For non-powers of 2, #comparisons is 2 élog nù + 2
\complexity is Θ (log n), which is better than linear search. 



Example: Bubble Sort
Find complexity of bubble sort in terms of #comparisons

procedure bubblesort(a1,…,an: real numbers 
with n ≥ 2)

for i := 1 to n− 1
for j := 1 to n − i

if aj >aj+1 then interchange aj and aj+1

{a1,…, an is now in increasing order}

Solution: A sequence of n −1 passes is made through list. 
On ith pass n − i comparisons are made. 
Hence #comparisons is

\complexity of bubble sort is  Θ(n2).



Example: Insertion Sort
Find complexity of insertion sort in terms of #comparisons

procedure insertion sort(a1,…,an: 
real numbers with n ≥ 2)

for j := 2 to n
i := 1
while aj > ai

i := i + 1
m := aj

for k := 0 to j − i − 1
aj-k := aj-k-1

ai := m

Solution: If we study # passes for 2 
serially constructed while and for-
loops inside the outer for-loop, we 
see that #comparisons is exactly  j, 
the index of the outer loop.
Hence #comparisons in total is:

\complexity is Θ(n2).



Matrix Multiplication Algorithm
 The definition for matrix multiplication can be expressed 

as an algorithm; C = A B where C is an m n matrix that is 
the product of the m k matrix A and the   k n matrix B.

 This algorithm carries out matrix multiplication based on 
its definition. 

procedure matrix multiplication(A,B: matrices)
for i := 1 to m              

for j := 1 to n
cij := 0
for q := 1 to k

cij := cij + aiq bqj

return C{C = [cij] is the product of A and B}



Example: Matrix Multiplication

Find complexity in terms of #arithmetic operations

Solution: Product of 2 n ´ n matrices is itself an n ´ n
matrix and so has n2  entries.

Finding an entry requires n mults & n − 1 additions.

[(i,j)th entry is the dot product of i th row and j th column.]

Hence, n3 multiplications & n2(n − 1) additions are used.

\complexity is O(n3).  



Algorithmic Paradigms
An algorithmic paradigm is general approach based on particular 
concept for constructing algorithms to solve variety of problems. 

 Greedy algorithms were introduced in Section 3.1.

 We discuss brute-force algorithms in this section.

 Elsewhere in text you can find:

 probabilistic algorithms (Chapter 7)

 divide-and-conquer algorithms (Chapter 8)

 dynamic programming (Chapter 8)

 backtracking (Chapter 11)

 many other paradigms that you may see in other courses.



Brute-Force Paradigm
A brute-force algorithm is solved in the most 
straightforward manner, without taking advantage of 
any ideas that can make the algorithm more efficient.

 Brute-force algorithms we have previously seen:

 sequential search

 bubble and insertion sort



Example: Closest Pair of Points
Construct algorithm for finding closest pair of points in a 
set of n points & find complexity in terms of # operations.

Solution: Recall that distance betwn pts (xi,yi) & (xj, yj) is

Our brute-force algorithm computes distance between all 
pairs of points & picks pair with smallest distance.

Procedure and estimate →

Note: In our procedure, we do not compute the square root, since the square 
of the distance between two points is smallest when the distance is smallest. 



Closest Pair of Points (cont.)
Algorithm for finding the closest pair in a set of n points.

 The algorithm loops through n(n −1)/2 pairs of points, computes the 
value (xj − xi)

2   + (yj − yi)
2 and compares it with the minimum, etc. 

 So our algorithm uses Θ(n2) arithmetic and comparison operations.
 For algorithm with O(log n) worst-case complexity, see Section 8.3.

procedure closest pair((x1, y1), (x2, y2), … ,(xn, yn): xi, yi real numbers)
min =  ∞

for i := 1 to n
for j := 1 to i

if (xj − xi)
2   + (yj − yi)

2   < min
then min := (xj − xi)

2   + (yj − yi)
2  

closest pair  := (xi, yi), (xj, yj)
return closest pair 



Terminology for Complexity



Comparison table for Complexity

• Times of more than 10100   years are indicated with an *.
• We assume each operation takes 10−11s  = 0.01 nano s = 10 pico s
• 1011 yr is 100 billion yrs (BY). In contrast age of universe is 13.8 BY

Problem
Size



Complexity of Problems
 Tractable: polynomial time alg. to solve problem (Class P).

 Intractable: ∄polynomial time alg. to solve problem 

 Unsolvable: ∄alg. to solve problem, e.g., halting problem.

 Class NP: Solution can be checked in polynomial time. But 
no polynomial time alg. has been found for finding solution. 

 NP Complete Class: If you find polynomial time alg. for one 
member of class, it can be used to solve all problems in class.  



P Versus NP Problem
P versus NP problem asks whether class  P  NP?  

 I.e., do problems whose solutions can be checked in poly. time, but can not 
be solved in poly. time?

 If polynomial time algorithm for any problem in the NP complete class 
were found, then that algorithm could be used to obtain a polynomial time 
algorithm for every problem in the NP complete class.

 Satisfiability (in Section 1.3) is an NP complete problem. 

 It is generally believed that P≠NP since no one has been able to find a 
polynomial time algorithm for any problem in the NP complete class. 

 P versus NP is the most famous unsolved problems in theoretical CS.

 The Clay Math Institute has $1,000,000 prize for solution!

Stephen Cook
(Born 1939)


