Algorithms Chapter 3

With Question/Answer Animations

Copyright © McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill Education.

Chapter Summary

- Algorithms
 - Example Algorithms
 - Algorithmic Paradigms
- Growth of Functions
 - Big-O and other Notation
- Complexity of Algorithms

Complexity of Algorithms Section 3.3

Section Summary

- Time Complexity
- Worst-Case Complexity
- Algorithmic Paradigms
- Understanding the Complexity of Algorithms

The Complexity of Algorithms

- Given problem, algorithm and input of a particular size, how efficient is algorithm for solving problem?
- In particular
 - 1. how much time does algorithm use?
 - 2. how much computer memory?
- When we analyze
 - 1. time, we are finding *time complexity*;
 - 2. computer memory, we find its *space complexity*.

Our focus is *Time* Complexity

- In both 2440 and 2540, we focus on time complexity. (You may find space complexity treated in other courses.)
- We measure time complexity as #operations needed & use big-O, big-Θ notation.
- We may use this analysis to
 - 1. to see how practical it is to use algorithm with input of a particular size.
 - 2. compare efficiency of different algorithms for solving same problem.
- We ignore implementation details, e.g.,
 - data structures
 - hardware and software platforms

Time Complexity

- To analyze time complexity, we determine #operations, e.g.,
 - comparisons;
 - arithmetic operations (addition, multiplication, etc.).
- We ignore "house keeping" aspects.
- If we determine
 - #operations needed
 - time needed for basic operations
- then we could estimate actual time a computer needs.
- We focus on *worst-case* time complexity of an algorithm which provides an upper bound on #operations needed.
- On occasion we find *average-case* complexity:
 - average #operations used over all inputs of particular size.

Example: analysis of "max"

Describe time complexity of "max", which finds the maximum element in a finite sequence.

procedure $max(a_1, a_2, ..., a_n: integers)$

 $max := a_1$ **for** i := 2 to nif $max < a_i$ then $max := a_i$ return $max\{max \text{ is the largest element}\}$

Solution: Count #comparisons.

- The $max < a_i$ comparison is made n 1 times.
- Each time *i* is incremented, a test is made to see if $i \le n$.
- One last comparison determines that *i* > *n*.
- Exactly 2(n-1) + 1 = 2n 1 comparisons are made.

Hence, the time complexity of the algorithm is $\Theta(n)$.

Example: Linear Search

Determine **worst-case** complexity of linear search.

procedure *linear search*(*x*:integer, $a_1, a_2, ..., a_n$: distinct integers) i := 1 **while** $(i \le n \text{ and } x \ne a_i)$ i := i + 1 **if** $i \le n$ **then** *location* := *i* **else** *location* := 0

return *location* is the subscript of the term that equals *x*, or is 0 if *x* is not found}

Solution: Count #comparisons.

- If x is in list, then loop will exit early $\Rightarrow \exists$ fewer comparisons
- Thus, we assume that x is **not** in the list.
- For each pass of loop, 2 comparisons are made; $i \le n$ and $x \ne a_i$.
- To exit loop, comparison $n + 1 \le n$ is made.
- After the loop, one more $n + 1 \le n$ comparison is made.

So in worst case, 2n + 2 comparisons are made.

: complexity is $\Theta(n)$.

Example: Linear Search (cont.)

Determine average-case complexity of linear search.

procedure *linear* search(x:integer, $a_1, a_2, ..., a_n$: distinct integers)

i := 1while $(i \le n \text{ and } x \ne a_i)$

i := *i* + 1

```
if i \le n then location := i
```

```
else location := 0
```

return *location* is the subscript of the term that equals *x*, or is 0 if *x* is not found}

Solution: This time we assume that *x* is in list, say in *j*th location, i.e., $x = a_j$

- For each pass of loop, 2 comparisons are made: $i \le n$ and $x \ne a_i$.
- To exit loop, comparison $j \le n$ (T) is made as well as $x \ne a_j$ (F).
- After the loop, one more $j \le n$ comparison is made. So 2j + 1 comparisons are made. j could be any of 1,..., n and hence, ave $= \frac{1}{n} \sum_{j=1}^{n} 2j + 1 = \frac{1}{n} [2(\sum_{j=1}^{n} j) + n] = \frac{1}{n} [2\frac{n(n+1)}{2} + n] = n + 2$ \therefore average-case complexity is $\Theta(n)$. (For those don't like Σ , see next slide.)

Example: Linear Search (cont.)

• For those who do not like to work with Σ:

 $\frac{3+5+7+\ldots+(2n+1)}{n} = \frac{2(1+2+3+\ldots+n)+n}{n} = \frac{2\left[\frac{n(n+1)}{2}\right]}{n} + 1 = n+2$

 From now on, "complexity" will mean "worst-case time complexity" unless otherwise stated.

Example: Binary Search

Find complexity of binary search in terms of #comparisons.

procedure binary search(*x*: integer, $a_1, a_2, ..., a_n$: increasing integers) *i* := 1 {*i* is the left endpoint of interval} *j* := *n* {*j* is right endpoint of interval} **while** *i* < *j* $m := \lfloor (i + j)/2 \rfloor$ **if** $x > a_m$ then *i* := m + 1 **else** *j* := m **if** $x = a_i$ **then** *location* := *i* **else** *location* := 0 **return** *location* {location is the subscript *i* of the term a_i equal to *x*, or 0 if *x* is not found}

Solution: Assume for moment that $n = 2^k$ elements. Note that $k = \log n$.

- Two comparisons are made for each pass: i < j, and $x > a_m$.
- Before 1^{st} iteration, size of list is 2^k , then 2^{k-1} , 2^{k-2} & so on until size of list is $2^1 = 2$.
- Loop exits when |list| is $2^0 = 1$ & then x is compared with single remaining element.
- Hence, $2k + 2 = 2 \log n + 2$ comparisons are made.
- For non-powers of 2, #comparisons is $2 \lceil \log n \rceil + 2$
- : complexity is Θ (log *n*), which is better than linear search.

Example: Bubble Sort

Find complexity of bubble sort in terms of #comparisons

procedure $bubblesort(a_1,...,a_n)$: real numbers with $n \ge 2$) **for** i := 1 to n - 1 **for** j := 1 to n - i **if** $a_j > a_{j+1}$ **then** interchange a_j and a_{j+1} $\{a_1,...,a_n \text{ is now in increasing order}\}$

Solution: A sequence of n - 1 passes is made through list. On i^{th} pass n - i comparisons are made. Hence #comparisons is

$$(n-1) + (n-2) + \ldots + 2 + 1 = \frac{n(n-1)}{2}$$

: complexity of bubble sort is $\Theta(n^2)$.

Example: Insertion Sort

Find complexity of insertion sort in terms of #comparisons

Solution: If we study # passes for 2 serially constructed while and forloops inside the outer for-loop, we see that #comparisons is exactly j, the index of the outer loop. Hence #comparisons in total is:

$$2 + 3 + \dots + n = \frac{n(n-1)}{2} - 1$$

: complexity is $\Theta(n^2)$.

procedure insertion sort($a_1,...,a_n$: real numbers with $n \ge 2$) **for** j := 2 to ni := 1**while** $a_j > a_i$ i := i + 1 $m := a_j$ **for** k := 0 to j - i - 1 $a_{j-k} := a_{j-k-1}$ $a_i := m$

Matrix Multiplication Algorithm

- The definition for matrix multiplication can be expressed as an algorithm; C = A B where C is an m× n matrix that is the product of the m×k matrix A and the k×n matrix B.
- This algorithm carries out matrix multiplication based on its definition.

procedure matrix multiplication(A,B: matrices)
for i := 1 to m
for j := 1 to n $C_{ij} := 0$ for q := 1 to k $C_{ij} := c_{ij} + a_{iq} b_{qj}$ return C{C = [c_{ij}] is the product of A and B}

Example: Matrix Multiplication

Find complexity in terms of #arithmetic operations **Solution**: Product of 2 $n \times n$ matrices is itself an $n \times n$ matrix and so has n^2 entries.

Finding an entry requires n mults & n - 1 additions. [$(i,j)^{\text{th}}$ entry is the dot product of i^{th} row and j^{th} column.] Hence, n^3 multiplications & $n^2(n - 1)$ additions are used. \therefore complexity is $O(n^3)$.

Algorithmic Paradigms

An *algorithmic paradigm* is general approach based on particular concept for constructing algorithms to solve variety of problems.

- Greedy algorithms were introduced in Section 3.1.
- We discuss brute-force algorithms in this section.
- Elsewhere in text you can find:
 - probabilistic algorithms (Chapter 7)
 - divide-and-conquer algorithms (Chapter 8)
 - dynamic programming (Chapter 8)
 - backtracking (Chapter 11)

• ∃many other paradigms that you may see in other courses.

Brute-Force Paradigm

A *brute-force* algorithm is solved in the most straightforward manner, without taking advantage of any ideas that can make the algorithm more efficient.

- Brute-force algorithms we have previously seen:
 - sequential search
 - bubble and insertion sort

Example: Closest Pair of Points

Construct algorithm for finding closest pair of points in a set of *n* points & find complexity in terms of # operations. **Solution**: Recall that distance betwn pts (x_i, y_i) & (x_j, y_j) is $\sqrt{(x_j - x_i)^2 + (y_j - y_i)^2}$

Our brute-force algorithm computes distance between all pairs of points & picks pair with smallest distance.

Note: In our procedure, we do not compute the square root, since the square of the distance between two points is smallest when the distance is smallest.

Procedure and estimate \rightarrow

Closest Pair of Points (cont.)

Algorithm for finding the closest pair in a set of *n* points.

procedure closest pair($(x_1, y_1), (x_2, y_2), \dots, (x_n, y_n): x_i, y_i$ real numbers) min = ∞

for *i* := 1 to *n* **for** *j* := 1 to *i* **if** $(x_j - x_i)^2 + (y_j - y_i)^2 < min$ **then** min := $(x_j - x_i)^2 + (y_j - y_i)^2$ *closest pair* := $(x_i, y_i), (x_j, y_j)$ **return** *closest pair*

- The algorithm loops through n(n-1)/2 pairs of points, computes the value $(x_j x_i)^2 + (y_j y_i)^2$ and compares it with the minimum, etc.
- So our algorithm uses $\Theta(n^2)$ arithmetic and comparison operations.
- For algorithm with *O*(log *n*) worst-case complexity, see Section 8.3.

Terminology for Complexity

TABLE 1 Commonly Used Terminology for theComplexity of Algorithms.

Complexity	Terminology		
$\Theta(1)$	Constant complexity		
$\Theta(\log n)$	Logarithmic complexity		
$\Theta(n)$	Linear complexity		
$\Theta(n \log n)$	Linearithmic complexity		
$\Theta(n^b)$	Polynomial complexity		
$\Theta(b^n)$, where $b > 1$	Exponential complexity		
$\Theta(n!)$	Factorial complexity		

Comparison table for Complexity

Problem	Computer Time Used by Algorithms.					
Size	Bit Operations Used					
n	log n	п	n log n	n^2	2 ⁿ	
10	3×10^{-11} s	10^{-10} s	$3 \times 10^{-10} \text{ s}$	10 ⁻⁹ s	10 ⁻⁸ s	
10^{2}	$7 \times 10^{-11} \text{ s}$	10^{-9} s	$7 \times 10^{-9} \text{ s}$	$10^{-7} { m s}$	$4 \times 10^{11} \text{ yr}$	
10 ³	$1.0 \times 10^{-10} \text{ s}$	10^{-8} s	$1 \times 10^{-7} \mathrm{s}$	10^{-5} s	*	
10 ⁴	$1.3 \times 10^{-10} \text{ s}$	$10^{-7} { m s}$	1×10^{-6} s	10^{-3} s	*	
10 ⁵	$1.7 \times 10^{-10} \text{ s}$	10^{-6} s	2×10^{-5} s	0.1 s	*	
10 ⁶	$2 \times 10^{-10} \text{ s}$	10^{-5} s	$2 \times 10^{-4} \mathrm{s}$	0.17 min	*	

- Times of more than 10¹⁰⁰ years are indicated with an *.
- We assume each operation takes 10^{-11} s = 0.01 nano s = 10 pico s
- 10¹¹ yr is 100 billion yrs (BY). In contrast age of universe is 13.8 BY

Complexity of Problems

- *Tractable*: ∃polynomial time alg. to solve problem (*Class P*).
- *Intractable*: ∄polynomial time alg. to solve problem
- Unsolvable: ∄alg. to solve problem, e.g., halting problem.
- Class NP: Solution can be checked in polynomial time. But no polynomial time alg. has been found for finding solution.
- *NP Complete Class*: If you find polynomial time alg. for one member of class, it can be used to solve all problems in class.

P Versus NP Problem

Stephen Cook (Born 1939)

P versus NP problem asks whether class $P \neq NP$?

- I.e., do ∃problems whose solutions can be *checked* in poly. time, but can not be *solved* in poly. time?
- If polynomial time algorithm for *any* problem in the NP complete class were found, then that algorithm could be used to obtain a polynomial time algorithm for *every* problem in the NP complete class.
 - Satisfiability (in Section 1.3) is an NP complete problem.
- It is generally believed that P≠NP since no one has been able to find a polynomial time algorithm for any problem in the NP complete class.
- P versus NP is the most famous **unsolved** problems in theoretical CS.
- The Clay Math Institute has \$1,000,000 prize for solution!