Copyright © McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill Education.

Chapter Summary

e Algorithms
e Example Algorithms

e Algorithmic Paradigms

e Growth of Functions
e Big-O and other Notation

* Complexity of Algorithms

Section Summary

Time Complexity

Worst-Case Complexity

Algorithmic Paradigms

Understanding the Complexity of Algorithms

/ |

/Th/eCompIexity of Algorithms

Given problem, algorithm and input of a particular
size, how efficient is algorithm for solving problem?

In particular
1. how much time does algorithm use?
>. how much computer memory?
When we analyze
1. time, we are finding time complexity;

2. computer memory, we find its space complexity.

//
P

‘Our focus is Time Complexity

In both 2440 and 2540, we focus on time complexity.
(You may find space complexity treated in other courses.)

We measure time complexity as #operations needed &
use big-O, big-® notation.
We may use this analysis to

1. tosee how practical it is to use algorithm with input of
a particular size.

>. compare efficiency of different algorithms for solving
same problem.

We ignore implementation details, e.g.,

e data structures
e hardware and software platforms

Time Complexity

To analyze time complexity, we determine #operations, e.g.,
® cOmMparisons;
e arithmetic operations (addition, multiplication, etc.).
We ignore “house keeping” aspects.
If we determine
e #operations needed
e time needed for basic operations
then we could estimate actual time a computer needs.

We focus on worst-case time complexity of an algorithm
which provides an upper bound on #operations needed.

On occasion we find average-case complexity:
e average #operations used over all inputs of particular size.

— . S

= o (“ | n
Example: analysis of “max
Describe time complexity of “max”, which finds
the maximum element in a finite sequence.
procedure max(a, a,,, a,: integers)
max := q,
fori:=2ton

if max < a; then max = q,
return max{max is the largest element}

Solution: Count #comparisons.
* The max < a; comparison is made n — 1 times.
« Each timeiis incremented, a test is made to see if /< n.
* One last comparison determines that i > n.
« Exactly 2(n — 1) + 1 = 2n— 1 comparisons are made.
Hence, the time complexity of the algorithm is ®(n).

“Example: Linear Search

Determine worst-case complexity of linear search.

procedure linear search(x:integer, a,, a,, ...,a,: distinct integers)
=l
while (i < nand x # q;)
1=1+1
if i < n then location =i

else location := 0
return location{location is the subscript of the term that equals x, or is 0 if x is not found}

Solution: Count #comparisons.

e I[f x is in list, then loop will exit early = Jfewer comparisons
* Thus, we assume that x is not in the list.
* For each pass of loop, 2 comparisons are made; i < nand x = a;.
* To exit loop, comparison n + 1 < n is made.
» After the loop, one more n + 1 < n comparison is made.

So in worst case, 2n + 2 comparisons are made.

~.complexity is O(n).

Example: Linear Search (cont.)
Determine average-case complexity of linear search.

procedure linear search(x:integer, a, a,, ...,a,: distinct integers)
Lk
while (i< nand x # q,)
B B o
if i < n then location =i
else location := 0

return location{location is the subscript of the term that equals x, or is 0 if x is not found}

Solution: This time we assume that x is in list, say in j" location, i.e., x = a;
 For each pass of loop, 2 comparisons are made: i < nand x # q;.
» To exit loop, comparison j < n (T) is made as well as x # a; (F).
 After the loop, one more j < n comparison is made.
So 2j + 1 comparisons are made. j could be any of 1,.., n and hence,

ave=% 2k =%[2(Z}f‘=1j)+n] =%[2n(nz+1)+n] =n+2

-.average-case complexity is @(n). (For those don't like X, see next slide.)

Example: Linear Search (cont.)

For those who do not like to work with X:

34547+ 4 @ntl) | 2(14243+.4m)an _ 2P0 L

n n n

From now on, “complexity” will mean
« . ® »
worst-case time complexity
unless otherwise stated.

———
~—Example: Binary Search =

Find complexity of binary search in terms of #comparisons.

procedure binary search(x: integer, a,a,,..., a,: increasing integers)
i := 1 {i is the left endpoint of interval}
j :=n {j is right endpoint of interval}
while i <j
m = [(i +j)/2]
ifx>a,theni:=m+1
elsej:=m
if x = g, then location =i
else location := 0

return location{location is the subscript i of the term a; equal to x, or 0 if x is not found}

Solution: Assume for moment that n = 2 elements. Note that k = log n.

* Two comparisons are made for each pass: i<j,and x>a,, .

 Before 1%t iteration, size of list is 2k, then 2k1, 2k2 & so on until size of list is 21 = 2.

* Loop exits when |[list| is 2° = 1 & then x is compared with single remaining element.
Hence, 2k + 2 = 2 log n + 2 comparisons are made.

 For non-powers of 2, #comparisons is 2 |_log nl+2

~.complexity is ® (log n), which is better than linear search.

/ |

~Example: Bubble Sort

Find complexity of bubble sort in terms of #comparisons

procedure bubblesort(a,,...,a,: real numbers
with n = 2)
fori:=1ton—1
forj:=1ton —i
if a; >a;,, then interchange q;and a;,,

J+1
la,..., a, is now in increasing order}

Solution: A sequence of n —1 passes is made through list.
On it" pass n — i comparisons are made.
Hence #comparisons is

n(n—1)

(n—1)+(n—2)+...+24+1 = =&

-.complexity of bubble sortis ®(n?).

—

\\

Example: Insertion Sort

Find complexity of insertion sort in terms of #comparisons

Solution: If we study # passes for 2
serially constructed while and for-
loops inside the outer for-loop, we
see that #comparisons is exactly j,
the index of the outer loop.

Hence #comparisons in total is:

2+t 4n = “”’(”T_l)—l

.complexity is @(n?).

procedure insertion sort(a,,...,a,:
real numbers with n = 2)
forj:=2ton
=
while g, > g
1=1+1
m := q
fork:=0toj —i—1
Q= aiy,
. =m

Matrix Multiplication Algorithm

The definition for matrix multiplication can be expressed
as an algorithm; C = A B where C is an mx n matrix that is
the product of the m X k matrix A and the kX n matrix B.

This algorithm carries out matrix multiplication based on
its definition.

procedure matrix multiplication(A, B: matrices)
fori:=1tom

fOI‘j =1ton A = [a] is a m X k matrix
Cjj = 0 B = [b;j] is a k X n matrix
forg:=1tok

return C{C = [¢;] is the product of A and B}

/ |

/V

Example: Matrix Multiplication

Find complexity in terms of #arithmetic operations

Solution: Product of 2 n X n matrices is itself an n X n
matrix and so has n? entries.

Finding an entry requires n mults & n — 1 additions.
[(7))™ entry is the dot product of 7t row and j* column.]
Hence, n® multiplications & n“(n — 1) additions are used.
-.complexity is O(n3).

. . =
Algorithmic Paradigms

An algorithmic paradigm is general approach based on particular
concept for constructing algorithms to solve variety of problems.

Greedy algorithms were introduced in Section 3.1.
We discuss brute-force algorithms in this section.
Elsewhere in text you can find:
e probabilistic algorithms (Chapter 7)
e divide-and-conquer algorithms (Chapter 8)
e dynamic programming (Chapter 8)
e backtracking (Chapter 11)
dmany other paradigms that you may see in other courses.

p —

Brute-Force Paradigm

A brute-force algorithm is solved in the most
straightforward manner, without taking advantage of
any ideas that can make the algorithm more efficient.

Brute-force algorithms we have previously seen:
e sequential search

e bubble and insertion sort

/
Example: Closest Pair of Points

Construct algorithm for finding closest pair of points in a
set of n points & find complexity in terms of # operations.

Solution: Recall that distance betwn pts (x,y;) & (x;, y;) is
V{(z5 — %)% + (5 — 4i)?
Our brute-force algorithm computes distance between all
pairs of points & picks pair with smallest distance.

Note: In our procedure, we do not compute the square root, since the square
of the distance between two points is smallest when the distance is smallest.

Procedure and estimate —

“Closest Pair of Points (cont.)

Algorithm for finding the closest pair in a set of n points.

procedure closest pair((xl, v), (x,,¥,), «e (X, ¥.): X;, y; real numbers)
min = 00
fori:=1ton
forj:=1toi
if (x; — x;)* + (y; —y;)* <min
then min :=(x; — x)* + (y; — y,)?
closest pair := (x; y,;), (x;, y;)

return closest pair

The algorithm loops through n(n —1)/2 pairs of points, computes the
value gcj — x;)* + (y; — y;)* and compares it with the minimum, etc.

So our algorithm uses ®(n?) arithmetic and comparison operations.
For algorithm with O(log n) worst-case complexity, see Section 8.3.

erminology for Complexity

TABLE 1 Commonly Used Terminology for the
Complexity of Algorithms.
Complexity Terminology
O(1) Constant complexity
®(log n) Logarithmic complexity
O(n) Linear complexity
O logn) Linearithmic complexity
O (n?) Polynomial complexity
O ("), where b > 1 Exponential complexity
O(n!) Factorial complexity

mparison table for Complexity

Computer Time Used by Algorithms.

Problem
Size Bit Operations Used
n logn n nlogn n? 2"
10 3x 1071 1010 g 3x 10710 109 s 108 s
10 Tx10~ s W78 THIOs 107 s 45 1015
1()3 1.0x 10~10g4 10~8 g 1 x10~ 7 s 1077 s e
104 1.3 x 10710 g 1077 s I x 10765 1073 s *
103 1.7 x 1010 g 106 s 2% 1077 s 0.1s
100 2% 10710 107 s 2x 10745 0.17 min *

* Times of more than 10!% years are indicated with an *,
» We assume each operation takes 10!!s = 0.01 nano s = 10 pico s
* 10" yris 100 billion yrs (BY). In contrast age of universe is 13.8 BY

“Complexity of Problems

Tractable: 3polynomial time alg. to solve problem (Class P).
Intractable: Apolynomial time alg. to solve problem
Unsolvable: Aalg. to solve problem, e.g., halting problem.

Class NP: Solution can be checked in polynomial time. But
no polynomial time alg. has been found for finding solution.

NP Complete Class: If you find polynomial time alg. for one
member of class, it can be used to solve all problems in class.

/

= . b
Versus NP Problem

P versus NP problem asks whether class P = NP?

[.e., do Iproblems whose solutions can be checked in poly. time, but can not
be solved in poly. time?

[f polynomial time algorithm for any problem in the NP complete class
were found, then that algorithm could be used to obtain a polynomial time
algorithm for every problem in the NP complete class.

e Satisfiability (in Section 1.3) is an NP complete problem.

It is generally believed that P#NP since no one has been able to find a
polynomial time algorithm for any problem in the NP complete class.

P versus NP is the most famous unsolved problems in theoretical CS.
The Clay Math Institute has $1,000,000 prize for solution!

