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Chapter Summary
 Algorithms 

 Example Algorithms 

 Algorithmic Paradigms

 Growth of Functions

 Big-O and other Notation

 Complexity of Algorithms
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Section 3.2
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Section Summary
 Big-O Notation

 Big-O Estimates for Important Functions

 Big-Omega and Big-Theta Notation
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The Growth of Functions
 In both CS and math:

 There are times when we care about how fast a function grows.

 In CS, the issue is known as complexity (section 3.3). Here 
are some questions that may arise:
 How quickly does an algorithm solve a problem as input grows?

 How does the efficiency of two different algorithms for solving 
the same problem compare?

 Is it practical to use a particular algorithm as the input grows?

 In math, growth of functions are studied in
 number theory (Chapter 4)  

 combinatorics (Chapters 6 and 8)
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Big-O Notation
Definition: Let f and g be functions from Z or R to R. 
f(x) is O(g(x)) if constants C and k such that

whenever  x > k. (illustration on next slide)

 This is read

 “f(x) is big-O of g(x)” or   

 “f is asymptotically dominated by g.”

 C and k are witnesses to relationship f(x) is O(g(x)).

 Only one pair of witnesses is needed. 

6



Illustration of Big-O Notation

f(x) is O(g(x)
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Important Points re Big-O Notation

If one pair of witnesses, then infinitely many pairs.

 We can always make k or C larger and still maintain inequality                                
. 

 i.e., any pair C ̍ and k̍ where C < C̍ and k < k ̍ is also a pair of 
witnesses since                                         whenever x > k̍ > k.

You may see  “ f(x) = O(g(x))” instead of “ f(x) is O(g(x)).”  

 But this is abuse since there is no equality just inequality.
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More Important Points re Big-O
 It is ok to write f(x) ∊ O(g(x)), because  O(g(x)) represents 

the set of functions that are O(g(x)).

 When functions take on positive values only

 we drop the absolute value sign:

f(x) is O(g(x)) if ∃𝐶, 𝑘 > 0 such that ∀𝑥 > 𝑘, 𝑓 𝑥 ≤ 𝐶𝑔(𝑥)
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Using the Definition of Big-O Notation
Example: Show that                                      is            .

Solution:  Since when x  1,  x  x2 and 1  x2

 So can take C = 4 and k = 1 as witnesses

(see graph on next slide)

 Alternatively, when x  2, we have   2x ≤ x2 and 1  x2

 So can take C = 3 and k = 2 as witnesses instead.                                
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Illustration of Big-O Notation                                                                                                                     

is
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Big-O Notation continued
 Since both                                     and

are such that                                 and                               (why?).

We say that the two functions are of the same order.

(More on this later)

 If                                and ∀𝑥 > 𝑟, h(x)  g(x), then                              . 

[for the witness pair, choose the same C and let 𝑘′ = max(𝑘, 𝑟)]

 For many applications, the goal is to select the function g(x) in O(g(x)) as 
small as possible (up to multiplication by a constant, of course).
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Using the Definition of Big-O Notation
Example: Show that 7x2 is O(x3).

Solution: When x > 7, 7x2 < x3. Take C =1 and k = 7 
as witnesses to establish that 7x2 is O(x3).

(Would C = 7 and k = 1 work?)

Example: Show that n2 is  not O(n).

Solution: Suppose C, k for which n2 ≤ Cn, whenever 
n > k. Then  (by dividing both sides of n2 ≤ Cn) by n, 
then n ≤ C must hold for all n > k. A contradiction!
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Big-O Estimates for Polynomials
Let 

where                                 are real numbers with an ≠0. 

Then f(x) is O(xn).                           

Proof:  |f(x)| = |anxn + an-1 xn-1 + ∙∙∙ + a1x
1   + a0|

≤ |an|xn + |an-1| x
n-1 + ∙∙∙ + |a1|x

1 + |a0|

= xn (|an| + |an-1| /x + ∙∙∙ + |a1|/xn-1 + |a0|/ xn)

≤ xn (|an| + |an-1| + ∙∙∙ + |a1|+ |a0|)

Take C = |an| + |an-1| + ∙∙∙ + |a0| and k = 1. QED

 Leading term anxn of polynomial dominates its growth.  

Use triangle inequality, 
exercise, Section 1.8.

Assuming x > 1
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More Big-O Estimates
Example: Use big-O notation to estimate the sum of 
the first n positive integers.

Solution:

Hence
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More Big-O Estimates (cont)
Example: Use big-O notation to estimate n! and log n!

Solution:

*

Hence

Now apply log to * and use a property of logarithms

.

Hence, log(n!) is O(n∙log(n)) taking C = 1 and k = 1.
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Display of Growth of Functions

Note the difference in behavior of functions as n gets larger
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Who dominates who among 
logarithms, powers, and exponents?
 If d > c > 1, then nc is O(nd), but nd is not  O(nc). 

 If c > b > 1, then bn is O(cn), but cn is not  O(bn).

[exponentials and powers strictly dominate within 
their classes as expected]

 If  b > 1 and c and d are positive, then 

(logb n)c is O(nd), but nd is not O((logb n)c)

[any power strictly dominates a log power]

 If  b > 1 & d > 0, then nd is O(bn), but bn is not O(nd).

[any exponential strictly dominates a power]

18



Combinations of Functions
 If  f1 (x) is O(g1(x)) and f2 (x) is O(g2(x)) then 

( f1 + f2 )(x) is O(max(|g1(x) |,|g2(x) |)).

(See next slide for proof)

 If  f1 (x) and f2 (x) are both O(g(x)) then 

( f1 + f2 )(x) is O(g(x)).

(See text for argument)                                                  

 If  f1 (x) is O(g1(x)) and f2 (x) is O(g2(x)) then 

( f1 f2 )(x) is O(g1(x)g2(x)).

(See text for argument)                                                  
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Combinations of Functions
If  f1 (x) is O(g1(x)) and f2 (x) is O(g2(x)) then 

( f1 + f2 )(x) is O(max(|g1(x) |,|g2(x) |)).

Proof:                                                        
By the definition of big-O notation, C1,C2 ,k1,k2 such that                                               
| f1 (x)| ≤ C1|g1(x)| when x > k1 and |f2 (x)| ≤ C2|g2(x)| when x > k2 .

|( f1 + f2 )(x)| = |f1(x) + f2(x)| 

≤ |f1 (x)| + |f2 (x)|      by the triangle inequality |a + b| ≤ |a| + |b|

≤ C1|g1(x)| + C2|g2(x)| 

≤ C1 g(x) + C2 g(x) where  g(x) = max(|g1(x)|,|g2(x)|)

= (C1 + C2) g(x)

= C g(x)           where C = C1 + C2 

Therefore |( f1 + f2 )(x)| ≤ C g(x) whenever x > k, where k = max(k1,k2)
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Ordering Functions by Order of Growth
Put in order so that each function is big-O of next function: 

 f1(n) = (1.5)n

 f2(n) = 8n3+17n2  +111

 f3(n) = (log n )2

 f4(n) = 2n

 f5(n) = log (log n)

 Start by finding the dominant term in the 2 functions that 
have multiple terms. 

 Use hierarchy--constant, log of log, powers of log, powers, 
exponential, factorial (nn)--to put into categories.

 Follow the usually clear hierarchy within each category.

 f6(n) = n2 (log n)3

 f7(n) = 2n (n2  +1)

 f8(n) = n3+ n(log n)2 

 f9(n) = 10000

 f10(n) = n!
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Ordering Functions by Order Solution
f9(n) = 10000       (constant, does not increase with n)

f5(n) = log (log n)     (grows slowest of all the others)

f3(n) = (log n )2 (grows next slowest)

f6(n) = n2 (log n)3   (next largest, (log n)3 factor smaller than any power of n)

f2(n) = 8n3+17n2  +111    (tied with the one below)

f8(n) = n3+ n(log n)2

f1(n) = (1.5)n   (next largest, an exponential function)

f4(n) = 2n (grows faster than one above since 2 > 1.5)

f7(n) = 2n (n2  +1)     (grows faster than above because of the n2  +1 factor)

f10(n) = n! ( n!  grows faster than cn for  every c)
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Big-Omega Notation
Definition: Let f and g be functions from Z or R to R. 

if  C and k such that

when x > k.

“f(x) is big-Omega of g(x)” or “f asymptotically dominates g.”

 Big-O gives an upper bound on the growth of a function, 
while Big-Omega gives a lower bound. 

 Big-Omega tells us that a function grows at least as fast as 
another.

Ω is the upper case 
version of the lower 
case Greek letter ω.
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Big-Omega Notation
Example:  Show that                                        is

where                  .

Solution:                                                    x  R.

\ (Take C = 8 and k = 1)
 Is it also the case that                         is                                       ?

 What can you take for C and k?

 Can we generalize this observation?

 f(x) is  Ω(g(x)) if and only if g(x) is O(f(x)). 

 This follows from the definitions. (See text for details.)

 If pair for LHS is C, k, we can take as pair for RHS 1/C, k.
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Big-Theta Notation
Definition: Let f and g be functions from Z or R to R. 

if and                            . 

 We say that 

 “f(x) is big-Theta of g(x)”

 “f(x) is of order g(x)” 

 “f(x) and g(x) are of the same order.”   

 if and only if constants C1 , C2 and k 
such that C1g(x) < f(x) < C2 g(x)   x > k. 

(This follows from the definitions of big-O and big-Omega.)

Θ is the upper case 
version of the lower 
case Greek letter θ.
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Big Theta Notation example 1
Example: Show that sum of first n positive integers is Θ(n2).

Solution: Let f(n) = 1 + 2 + ∙∙∙  + n.

 We have already shown that f(n) is O(n2).

 To show that f(n) is Ω(n2), we need a positive constant C such 
that f(n) > Cn2   for sufficiently large n.  Summing only the 
terms  n/2 we obtain the inequality. To ease calculations, we 
assume n even. We leave n odd case as exercise.

1 + 2 + ∙∙∙  + n ≥  n/2 + ( n/2 + 1) + ∙∙∙  + n

≥   n/2 + n/2 + ∙∙∙  + n/2

= (n/2 +1)(n/2) ≥  n2/4

 Taking C = ¼,  f(n) > Cn2 n  Z+. Hence, f(n) is Ω(n2). 

 \ f(n) is Θ(n2).
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Big-Theta Notation example 2
Example: Sh0w that f(x) = 3x2 + 8x log x is Θ(x2).

Solution: 

 3x2 + 8x log x  ≤  11x2  for x > 1,                                            
since 0 ≤ 8x log x ≤ 8x2 .

 Hence, 3x2 + 8x log x is O(x2).

(Why? What pair C, k have we shown to work?)

 3x2  + 8x log x is clearly Ω(x2 ).

(Why? What pair C, k works?)

 Hence, 3x2 + 8x log x is Θ(x2).
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Miscellaneous Q facts/confusion
 If then as well.

 Also note that                               if and only if 

and                             

 partially accounting for why you see big-Omega infrequently.

 Writers are often careless and use big-O when they really 
mean big-Teta.
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Big-Theta Estimates for Polynomials
Theorem: Let 

where                                 are real numbers with an ≠0. 

Then f(x) is Θ(xn) (or of order xn).

(The proof is an exercise.) 

Examples: 

is Θ(x5).

is Θ(x199) . 
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Classifying Functions by their Order

f9(n) = 10000 is Θ(1 )
f5(n) = log (log n) is Θ(log (log n))
f3(n) = is Θ((log n )2 )
f6(n) = n2 (log n)3 is Θ(n2 (log n)3 )
f2(n) = 8n3+17n2  +111 n2  is Θ(n3 )
f8(n) = n3+ n(log n)2is Θ(n3 )
f1(n) = (1.5)n is Θ((1.5)n)
f4(n) = 2n is Θ(2n)
f7(n) = 2n (n2  +1)  is Θ(n2 2n)
f10(n) = n! is Θ(nn)
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