Algorithms Chapter 3

With Question/Answer Animations

Chapter Summary

- Algorithms
 - Example Algorithms
 - Algorithmic Paradigms
- Growth of Functions
 - Big-O and other Notation
- Complexity of Algorithms

The Growth of Functions

Section 3.2

Section Summary

Big-O Notation

- Donald E. Knuth (Born 1938)
- Big-O Estimates for Important Functions
- Big-Omega and Big-Theta Notation

Edmund Landau (1877-1938)

Paul Gustav Heinrich Bachmann (1837-1920)

The Growth of Functions

- In both CS and math:
 - There are times when we care about how fast a function grows.
- In CS, the issue is known as **complexity** (section 3.3). Here are some questions that may arise:
 - How quickly does an algorithm solve a problem as input grows?
 - How does the efficiency of two different algorithms for solving the same problem compare?
 - Is it practical to use a particular algorithm as the input grows?
- In math, growth of functions are studied in
 - number theory (Chapter 4)
 - combinatorics (Chapters 6 and 8)

Big-O Notation

Definition: Let f and g be functions from \mathbb{Z} or \mathbb{R} to \mathbb{R} . f(x) is O(g(x)) if \exists constants C and k such that

$$|f(x)| \le C|g(x)|$$

whenever x > k. (illustration on next slide)

- This is read
 - "f(x) is big-O of g(x)" or
 - "f is asymptotically dominated by g."
- C and k are *witnesses* to relationship f(x) is O(g(x)).
 - Only one pair of witnesses is needed.

Illustration of Big-O Notation

f(x) is O(g(x))

The part of the graph of f(x) that satisfies f(x) < Cg(x) is shown in color.

Important Points re Big-O Notation

If \exists one pair of witnesses, then \exists infinitely many pairs.

- We can always make k or C larger and still maintain inequality . $|f(x)| \le C|g(x)|$
- i.e., any pair C' and k' where C < C' and k < k' is also a pair of witnesses since $|f(x)| \le C|g(x) \le C'|g(x)|$ whenever x > k' > k.

You may see "f(x) = O(g(x))" instead of "f(x) is O(g(x))."

• But this is abuse since there is no equality just inequality.

More Important Points re Big-O

- It is ok to write $f(x) \in O(g(x))$, because O(g(x)) represents the set of functions that are O(g(x)).
- When functions take on positive values only
 - we drop the absolute value sign:

$$f(x)$$
 is $O(g(x))$ if $\exists C, k > 0$ such that $\forall x > k, f(x) \le Cg(x)$

Using the Definition of Big-O Notation

Example: Show that $f(x) = x^2 + 2x + 1$ is $O(x^2)$.

Solution: Since when $x \ge 1$, $x \le x^2$ and $1 \le x^2$

$$0 \le x^2 + 2x + 1 \le x^2 + 2x^2 + x^2 = 4x^2$$

- So can take C = 4 and k = 1 as witnesses (see graph on next slide)
- Alternatively, when $x \ge 2$, we have $2x \le x^2$ and $1 \le x^2$

$$0 \le x^2 + 2x + 1 \le x^2 + x^2 + x^2 = 3x^2$$

• So can take C = 3 and k = 2 as witnesses instead.

Illustration of Big-O Notation

$$f(x) = x^2 + 2x + 1$$
 is $O(x^2)$

The part of the graph of $f(x) = x^2 + 2x + 1$ that satisfies $f(x) < 4x^2$ is shown in blue.

Big-O Notation continued

• Since both $f(x)=x^2+2x+1$ and $g(x)=x^2$ are such that f(x) is O(g(x)) and g(x) is O(f(x)) (why?). We say that the two functions are of the *same order*.

(More on this later)

• If f(x) is O(g(x)) and $\forall x > r, h(x) \ge g(x)$, then f(x) is O(h(x))

[for the witness pair, choose the same *C* and let $k' = \max(k, r)$]

• For many applications, the goal is to select the function g(x) in O(g(x)) as small as possible (up to multiplication by a constant, of course).

Using the Definition of Big-O Notation

Example: Show that $7x^2$ is $O(x^3)$.

Solution: When x > 7, $7x^2 < x^3$. Take C = 1 and k = 7 as witnesses to establish that $7x^2$ is $O(x^3)$.

(Would C = 7 and k = 1 work?)

Example: Show that n^2 is not O(n).

Solution: Suppose $\exists C$, k for which $n^2 \le Cn$, whenever n > k. Then (by dividing both sides of $n^2 \le Cn$) by n, then $n \le C$ must hold for all n > k. A contradiction!

Big-O Estimates for Polynomials

Let
$$f(x) = a_n x^n + a_{n-1} x^{n-1} + \cdots + a_1 x + a_o$$

where a_0, a_1, \dots, a_n are real numbers with $a_n \neq 0$.
Then $f(x)$ is $O(x^n)$.
Proof: $|f(x)| = |a_n x^n + a_{n-1} x^{n-1} + \cdots + a_1 x^1 + a_o|$
Use triangle inequality, $\leq |a_n| x^n + |a_{n-1}| x^{n-1} + \cdots + |a_1| x^1 + |a_o|$
 $= x^n (|a_n| + |a_{n-1}| / x + \cdots + |a_1| / x^{n-1} + |a_o| / x^n)$
Assuming $x > 1$ $\leq x^n (|a_n| + |a_{n-1}| + \cdots + |a_1| + |a_o|)$
Take $C = |a_n| + |a_{n-1}| + \cdots + |a_o|$ and $k = 1$. QED

• Leading term $a_n x^n$ of polynomial *dominates* its growth.

More Big-O Estimates

Example: Use big-*O* notation to estimate the sum of the first *n* positive integers.

Solution:
$$1+2+\cdots+n \le n+n+\cdots n = n^2$$

Hence $1+2+\ldots+n$ is $O(n^2)$ taking $C=1$ and $k=1$.

More Big-O Estimates (cont)

Example: Use big-*O* notation to estimate *n*! and log *n*!

Solution:
$$f(n) = n! = 1 \times 2 \times \cdots \times n$$
.

*
$$n! = 1 \times 2 \times \cdots \times n \leq n \times n \times \cdots \times n = n^n$$

Hence n! is $O(n^n)$ taking C=1 and k=1.

Now apply log to * and use a property of logarithms

$$\log(n!) \le n \cdot \log(n)$$

Hence, $\log(n!)$ is $O(n \cdot \log(n))$ taking C = 1 and k = 1.

Display of Growth of Functions

Note the difference in behavior of functions as n gets larger

Who dominates who among logarithms, powers, and exponents?

- If d > c > 1, then n^c is $O(n^d)$, but n^d is not $O(n^c)$.
- If c > b > 1, then bⁿ is O(cⁿ), but cⁿ is not O(bⁿ).
 [exponentials and powers strictly dominate within their classes as expected]
- If b > 1 and c and d are positive, then
 (log_b n)^c is O(n^d), but n^d is not O((log_b n)^c)
 [any power strictly dominates a log power]
- If b > 1 & d > 0, then n^d is $O(b^n)$, but b^n is not $O(n^d)$. [any exponential strictly dominates a power]

Combinations of Functions

- If $f_1(x)$ is $O(g_1(x))$ and $f_2(x)$ is $O(g_2(x))$ then $(f_1 + f_2)(x)$ is $O(\max(|g_1(x)|,|g_2(x)|))$. (See next slide for proof)
- If $f_1(x)$ and $f_2(x)$ are both O(g(x)) then $(f_1 + f_2)(x)$ is O(g(x)). (See text for argument)
- If $f_1(x)$ is $O(g_1(x))$ and $f_2(x)$ is $O(g_2(x))$ then $(f_1f_2)(x)$ is $O(g_1(x)g_2(x))$. (See text for argument)

Combinations of Functions

```
If f_1(x) is O(g_1(x)) and f_2(x) is O(g_2(x)) then (f_1 + f_2)(x) is O(\max(|g_1(x)|, |g_2(x)|)).
```

Proof:

```
By the definition of big-O notation, \exists C_1, C_2, k_1, k_2 such that |f_1(x)| \le C_1 |g_1(x)| when x > k_1 and |f_2(x)| \le C_2 |g_2(x)| when x > k_2. |(f_1 + f_2)(x)| = |f_1(x) + f_2(x)| by the triangle inequality |a + b| \le |a| + |b| \le C_1 |g_1(x)| + |f_2(x)|| where g(x) = \max(|g_1(x)|, |g_2(x)|) = (C_1 + C_2) g(x) = (C_1 + C_2) g(x) where C = C_1 + C_2 Therefore |(f_1 + f_2)(x)| \le C g(x) whenever x > k, where k = \max(k_1, k_2)
```

Ordering Functions by Order of Growth

Put in order so that each function is big-O of next function:

•
$$f_1(n) = (1.5)^n$$

•
$$f_2(n) = 8n^3 + 17n^2 + 111$$

$$\bullet f_4(n) = 2^n$$

•
$$f_5(n) = \log(\log n)$$

$$\bullet f_6(n) = n^2 (\log n)^3$$

•
$$f_7(n) = 2^n (n^2 + 1)$$

•
$$f_8(n) = n^3 + n(\log n)^2$$

•
$$f_{9}(n) = 10000$$

$$\bullet f_{10}(n) = n!$$

- Start by finding the dominant term in the 2 functions that have multiple terms.
- Use hierarchy--constant, log of log, powers of log, powers, exponential, factorial (nⁿ)--to put into categories.
- Follow the usually clear hierarchy within each category.

Ordering Functions by Order Solution

```
f_{\rm o}(n) = 10000
                (constant, does not increase with n)
f_5(n) = \log(\log n) (grows slowest of all the others)
f_3(n) = (\log n)^2 (grows next slowest)
f_6(n) = n^2 (\log n)^3 (next largest, (\log n)^3 factor smaller than any power of n)
f_2(n) = 8n^3 + 17n^2 + 111 (tied with the one below)
f_8(n) = n^3 + n(\log n)^2
f_1(n) = (1.5)^n (next largest, an exponential function)
f_4(n) = 2^n (grows faster than one above since 2 > 1.5)
f_7(n) = 2^n (n^2 + 1) (grows faster than above because of the n^2 + 1 factor)
f_{10}(n) = n! ( n! grows faster than c^n for every c)
```

Big-Omega Notation

Definition: Let *f* and *g* be functions from Z or R to R.

$$f(x)$$
 is $\Omega(g(x))$ if $\exists C$ and k such that $|f(x)| \ge C|g(x)|$ when $x > k$.

 Ω is the upper case version of the lower case Greek letter ω .

"f(x) is big-Omega of g(x)" or "f asymptotically dominates g."

- Big-O gives an upper bound on the growth of a function, while Big-Omega gives a lower bound.
- Big-Omega tells us that a function grows at least as fast as another.

Big-Omega Notation

Example: Show that $f(x) = 8x^3 + 5x^2 + 7$ is $\Omega(g(x))$ where $g(x) = x^3$.

Solution:
$$f(x) = 8x^3 + 5x^2 + 7 \ge 8x^3 \ \forall x \in R$$
.

$$\therefore$$
 $f(x)$ is $\Omega(g(x))$ (Take $C=8$ and $k=1$)

- Is it also the case that $g(x) = x^3$ is $O(8x^3 + 5x^2 + 7)$?
- What can you take for C and k?
- Can we generalize this observation?
- f(x) is $\Omega(g(x))$ if and only if g(x) is O(f(x)).
 - This follows from the definitions. (See text for details.)
 - If pair for LHS is C, k, we can take as pair for RHS 1/C, k.

Big-Theta Notation

 Θ is the upper case version of the lower case Greek letter θ .

Definition: Let *f* and *g* be functions from Z or R to R.

$$f(x)$$
 is $\Theta(g(x))$ if $f(x)$ is $O(g(x))$ and $f(x)$ is $\Omega(g(x))$.

- We say that
 - "f(x) is big-Theta of g(x)"
 - "f(x) is of order g(x)"
 - "f(x) and g(x) are of the same order."
- f(x) is $\Theta(g(x))$ if and only if \exists constants C_1 , C_2 and k such that $C_1g(x) < f(x) < C_2g(x) \ \forall \ x > k$.

(This follows from the definitions of big-O and big-Omega.)

Big Theta Notation example 1

Example: Show that sum of first *n* positive integers is $\Theta(n^2)$.

Solution: Let $f(n) = 1 + 2 + \dots + n$.

- We have already shown that f(n) is $O(n^2)$.
- To show that f(n) is $\Omega(n^2)$, we need a positive constant C such that $f(n) > Cn^2$ for sufficiently large n. Summing only the terms $\geq n/2$ we obtain the inequality. To ease calculations, we assume n even. We leave n odd case as exercise.

$$1 + 2 + \dots + n \ge n/2 + (n/2 + 1) + \dots + n$$
$$\ge n/2 + n/2 + \dots + n/2$$
$$= (n/2 + 1)(n/2) \ge n^2/4$$

- Taking $C = \frac{1}{4}$, $f(n) > Cn^2 \forall n \in \mathbb{Z}^+$. Hence, f(n) is $\Omega(n^2)$.
- : f(n) is $\Theta(n^2)$.

Big-Theta Notation example 2

Example: Show that $f(x) = 3x^2 + 8x \log x$ is $\Theta(x^2)$. **Solution**:

- $3x^2 + 8x \log x \le 11x^2$ for x > 1, since $0 \le 8x \log x \le 8x^2$.
 - Hence, $3x^2 + 8x \log x$ is $O(x^2)$. (Why? What pair C, k have we shown to work?)
- $3x^2 + 8x \log x$ is clearly $\Omega(x^2)$. (Why? What pair C, k works?)
- Hence, $3x^2 + 8x \log x$ is $\Theta(x^2)$.

Miscellaneous Θ facts/confusion

- If f(x) is $\Theta(g(x))$ then g(x) is $\Theta(f(x))$ as well.
- Also note that f(x) is $\Theta(g(x))$ if and only if f(x) is O(g(x)) and g(x) is O(f(x))
 - partially accounting for why you see big-Omega infrequently.
- Writers are often careless and use big-O when they really mean big-Teta.

Big-Theta Estimates for Polynomials

Theorem: Let $f(x) = a_n x^n + a_{n-1} x^{n-1} + \cdots + a_1 x + a_o$ where a_0, a_1, \dots, a_n are real numbers with $a_n \neq 0$. Then f(x) is $\Theta(x^n)$ (or of order x^n). (The proof is an exercise.)

Examples:

$$f(x) = 8x^5 + 5x^2 + 10$$
 is $\Theta(x^5)$.
 $f(x) = 8x^{199} + 7x^{100} + x^{99} + 5x^2 + 25$ is $\Theta(x^{199})$.

Classifying Functions by their Order

$$f_9(n) = 10000 \text{ is}$$
 $\Theta(1)$
 $f_5(n) = \log (\log n) \text{ is}$ $\Theta(\log (\log n))$
 $f_3(n) = \text{ is}$ $\Theta((\log n)^2)$
 $f_6(n) = n^2 (\log n)^3 \text{ is}$ $\Theta(n^2 (\log n)^3)$
 $f_2(n) = 8n^3 + 17n^2 + 111 n^2 \text{ is}$ $\Theta(n^3)$
 $f_8(n) = n^3 + n(\log n)^2 \text{ is}$ $\Theta(n^3)$
 $f_1(n) = (1.5)^n \text{ is}$ $\Theta((1.5)^n)$
 $f_4(n) = 2^n \text{ is}$ $\Theta(2^n)$
 $f_7(n) = 2^n (n^2 + 1) \text{ is}$ $\Theta(n^2 2^n)$
 $f_{10}(n) = n! \text{ is}$ $\Theta(n^n)$