Algorithms
 Chapter 3

With Question/Answer Animations

Chapter Summary

- Algorithms
- Example Algorithms
- Algorithmic Paradigms
- Growth of Functions
- Big-O and other Notation
- Complexity of Algorithms

The Growth of Functions

Section 3.2

Section Summary

Donald E. Knuth

- Big-O Notation (Born 1938)
- Big-O Estimates for Important Functions
- Big-Omega and Big-Theta Notation

Edmund Landau (1877-1938)

Paul Gustav Heinrich Bachmann (1837-1920)

The Growth of Functions

- In both CS and math:
- There are times when we care about how fast a function grows.
- In CS, the issue is known as complexity (section 3.3). Here are some questions that may arise:
- How quickly does an algorithm solve a problem as input grows?
- How does the efficiency of two different algorithms for solving the same problem compare?
- Is it practical to use a particular algorithm as the input grows?
- In math, growth of functions are studied in
- number theory (Chapter 4)
- combinatorics (Chapters 6 and 8)

Big-O Notation

Definition: Let f and g be functions from Z or R to R . $f(x)$ is $\boldsymbol{O}(\boldsymbol{g}(\boldsymbol{x}))$ if \exists constants C and k such that

$$
|f(x)| \leq C|g(x)|
$$

whenever $x>k$. (illustration on next slide)

- This is read
- " $f(x)$ is big- O of $g(x)$ " or
- " f is asymptotically dominated by g."
- C and k are witnesses to relationship $f(x)$ is $O(g(x))$.
- Only one pair of witnesses is needed.

Illustration of Big-O Notation

$$
f(x) \text { is } O(g(x)
$$

The part of the graph of $f(x)$ that satisfies $f(x)<C g(x)$ is shown in color.

Important Points re Big-O Notation

If \exists one pair of witnesses, then $\exists i n f i n i t e l y ~ m a n y ~ p a i r s . ~$

- We can always make k or C larger and still maintain inequality

$$
|f(x)| \leq C|g(x)|
$$

- i.e., any pair C^{\prime} and k^{\prime} where $C<C^{\prime}$ and $k<k^{\prime}$ is also a pair of witnesses since $|f(x)| \leq C\left|g(x) \leq C^{\prime}\right| g(x) \mid$ whenever $x>k^{\prime}>k$.
You may see " $f(x)=O(g(x))$ " instead of " $f(x)$ is $O(g(x))$."
- But this is abuse since there is no equality just inequality.

More Important Points re Big-O

- It is ok to write $f(x) \in O(g(x))$, because $O(g(x))$ represents the set of functions that are $O(g(x))$.
- When functions take on positive values only
- we drop the absolute value sign:
$f(x)$ is $O(g(x))$ if $\exists C, k>0$ such that $\forall x>k, f(x) \leq C g(x)$

Using the Definition of Big-O Notation

 Example: Show that $f(x)=x^{2}+2 x+1$ is $O\left(x^{2}\right)$. Solution: Since when $x \geq 1, x \leq x^{2}$ and $1 \leq x^{2}$$$
0 \leq x^{2}+2 x+1 \leq x^{2}+2 x^{2}+x^{2}=4 x^{2}
$$

- So can take $C=4$ and $k=1$ as witnesses
(see graph on next slide)
- Alternatively, when $x \geq 2$, we have $2 x \leq x^{2}$ and $1 \leq x^{2}$

$$
0 \leq x^{2}+2 x+1 \leq x^{2}+x^{2}+x^{2}=3 x^{2}
$$

- So can take $C=3$ and $k=2$ as witnesses instead.

Illustration of Big-O Notation

Big-O Notation continued

- Since both $f(x)=x^{2}+2 x+1$ and $g(x)=x^{2}$ are such that $f(x)$ is $O(g(x))$ and $g(x)$ is $O(f(x))$ (why?). We say that the two functions are of the same order.
(More on this later)
- If $f(x)$ is $O(g(x))$ and $\forall x>r, h(x) \geq g(x)$, then

$$
f(x) \text { is } O(h(x))
$$

[for the witness pair, choose the same C and let $k^{\prime}=\max (k, r)$]

- For many applications, the goal is to select the function $g(x)$ in $O(g(x))$ as small as possible (up to multiplication by a constant, of course).

Using the Definition of Big-O Notation

Example: Show that $7 x^{2}$ is $O\left(x^{3}\right)$.
Solution: When $x>7,7 x^{2}<x^{3}$. Take $C=1$ and $k=7$ as witnesses to establish that $7 x^{2}$ is $O\left(x^{3}\right)$.
(Would $C=7$ and $k=1$ work?)
Example: Show that n^{2} is not $O(n)$.
Solution: Suppose $\exists C, k$ for which $n^{2} \leq C n$, whenever $n>k$. Then (by dividing both sides of $n^{2} \leq C n$) by n, then $n \leq C$ must hold for all $n>k$. A contradiction!

Big-O Estimates for Polynomials

Let $\quad f(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{1} x+a_{o}$
where $a_{0}, a_{1}, \ldots, a_{n}$ are real numbers with $a_{n} \neq 0$.
Then $f(x)$ is $O\left(x^{n}\right)$.
Proof: $|f(\mathrm{x})|=\left|a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{1} x^{1}+a_{\mathrm{o}}\right|$
Use triangle inequality, exercise, Section 1.8.

$$
\begin{aligned}
\substack{\text { e triangle inequality, } \\
\text { ercise, Section 1.8. }} & \leq\left|a_{n}\right| x^{n}+\left|a_{n-1}\right| x^{n-1}+\cdots+\left|a_{1}\right| x^{1}+\left|a_{\mathrm{o}}\right| \\
& =x^{n}\left(\left|a_{n}\right|+\left|a_{n-1}\right| / x+\cdots+\left|a_{1}\right| / x^{n-1}+\left|a_{\mathrm{o}}\right| / x^{n}\right) \\
\text { Assuming } x>1 & \leq x^{n}\left(\left|a_{n}\right|+\left|a_{n-1}\right|+\cdots+\left|a_{1}\right|+\left|a_{\mathrm{o}}\right|\right)
\end{aligned}
$$

Take $C=\left|a_{n}\right|+\left|a_{n-1}\right|+\cdots+\left|a_{\mathrm{o}}\right|$ and $k=1$. QED

- Leading term $a_{n} x^{n}$ of polynomial dominates its growth.

More Big-O Estimates

Example: Use big-O notation to estimate the sum of the first n positive integers.
Solution: $1+2+\cdots+n \leq n+n+\cdots n=n^{2}$
Hence $1+2+\ldots+n$ is $O\left(n^{2}\right)$ taking $C=1$ and $k=1$.

More Big-O Estimates (cont)

Example: Use big- O notation to estimate $n!$ and $\log n$!
Solution: $\quad f(n)=n!=1 \times 2 \times \cdots \times n$.

$$
{ }^{*} n!=1 \times 2 \times \cdots \times n \leq n \times n \times \cdots \times n=n^{n}
$$

Hence $n!$ is $O\left(n^{n}\right)$ taking $C=1$ and $k=1$.
Now apply log to * and use a property of logarithms

$$
\log (n!) \leq n \cdot \log (n)
$$

Hence, $\log (n!)$ is $O(n \cdot \log (n))$ taking $C=1$ and $k=1$.

Display of Growth of Functions

Note the difference in behavior of functions as \boldsymbol{n} gets larger

Who dominates who among

 logarithms, powers, and exponents?- If $d>c>1$, then n^{c} is $O\left(n^{d}\right)$, but n^{d} is not $O\left(n^{c}\right)$.
- If $c>\mathrm{b}>1$, then b^{n} is $O\left(c^{n}\right)$, but c^{n} is not $O\left(b^{n}\right)$. [exponentials and powers strictly dominate within their classes as expected]
- If $\mathrm{b}>1$ and c and d are positive, then
$\left(\log _{\mathrm{b}} n\right)^{\mathrm{c}}$ is $O\left(n^{d}\right)$, but n^{d} is not $O\left(\left(\log _{\mathrm{b}} n\right)^{\mathrm{c}}\right)$
[any power strictly dominates a log power]
- If $\mathrm{b}>1 \& d>0$, then n^{d} is $O\left(b^{n}\right)$, but b^{n} is not $O\left(n^{d}\right)$. [any exponential strictly dominates a power]

Combinations of Functions

- If $f_{1}(x)$ is $O\left(g_{1}(x)\right)$ and $f_{2}(x)$ is $O\left(g_{2}(x)\right)$ then

$$
\left(f_{1}+f_{2}\right)(x) \text { is } O\left(\max \left(\left|\mathrm{~g}_{1}(\mathrm{x})\right|,\left|\mathrm{g}_{2}(\mathrm{x})\right|\right)\right) .
$$

(See next slide for proof)

- If $f_{1}(x)$ and $f_{2}(x)$ are both $O(\mathrm{~g}(x))$ then

$$
\left(f_{1}+f_{2}\right)(x) \text { is } O(g(x))
$$

(See text for argument)

- If $f_{1}(x)$ is $O\left(\mathrm{~g}_{1}(\mathrm{x})\right)$ and $f_{2}(x)$ is $O\left(\mathrm{~g}_{2}(x)\right)$ then

$$
\left(f_{1} f_{2}\right)(x) \text { is } O\left(\mathrm{~g}_{1}(\mathrm{x}) \mathrm{g}_{2}(\mathrm{x})\right)
$$

(See text for argument)

Combinations of Functions

If $f_{1}(x)$ is $O\left(\mathrm{~g}_{1}(\mathrm{x})\right)$ and $f_{2}(x)$ is $O\left(\mathrm{~g}_{2}(\mathrm{x})\right)$ then

$$
\left(f_{1}+f_{2}\right)(x) \text { is } O\left(\max \left(\left|\mathrm{~g}_{1}(\mathrm{x})\right|,\left|\mathrm{g}_{2}(\mathrm{x})\right|\right)\right)
$$

Proof:

By the definition of big- O notation, $\exists \mathrm{C}_{1}, \mathrm{C}_{2}, k_{1}, k_{2}$ such that
$\left|f_{1}(x)\right| \leq \mathrm{C}_{1}\left|g_{1}(\mathrm{x})\right|$ when $\mathrm{x}>k_{1}$ and $\left|f_{2}(x)\right| \leq \mathrm{C}_{2}\left|g_{2}(\mathrm{x})\right|$ when $x>k_{2}$.
$\left|\left(f_{1}+f_{2}\right)(x)\right|=\left|f_{1}(x)+f_{2}(x)\right|$
$\leq\left|f_{1}(x)\right|+\left|f_{2}(x)\right| \quad$ by the triangle inequality $|\mathrm{a}+\mathrm{b}| \leq|\mathrm{a}|+|\mathrm{b}|$
$\leq \mathrm{C}_{1}\left|g_{1}(\mathrm{x})\right|+\mathrm{C}_{2}\left|g_{2}(\mathrm{x})\right|$
$\leq \mathrm{C}_{1} g(\mathrm{x})+\mathrm{C}_{2} g(\mathrm{x}) \quad$ where $g(x)=\max \left(\left|\mathrm{g}_{1}(\mathrm{x})\right|,\left|\mathrm{g}_{2}(\mathrm{x})\right|\right)$
$=\left(\mathrm{C}_{1}+\mathrm{C}_{2}\right) g(x)$
$=C g(x) \quad$ where $\mathrm{C}=\mathrm{C}_{1}+\mathrm{C}_{2}$
Therefore $\left|\left(f_{1}+f_{2}\right)(x)\right| \leq C g(x)$ whenever $x>k$, where $k=\max \left(k_{1}, k_{2}\right)$

Ordering Functions by Order of Growth

Put in order so that each function is big-O of next function:

- $f_{1}(n)=(1.5)^{n}$
- $f_{6}(n)=n^{2}(\log n)^{3}$
- $f_{2}(n)=8 n^{3}+17 n^{2}+111$
- $f_{7}(n)=2^{n}\left(n^{2}+1\right)$
- $f_{3}(n)=(\log n)^{2}$
- $f_{8}(n)=n^{3}+n(\log n)^{2}$
- $f_{4}(n)=2^{n}$
- $f_{9}(n)=10000$
- $f_{5}(n)=\log (\log n)$
- $f_{10}(n)=n!$
- Start by finding the dominant term in the 2 functions that have multiple terms.
- Use hierarchy--constant, log of log, powers of log, powers, exponential, factorial (n^{n})--to put into categories.
- Follow the usually clear hierarchy within each category.

Ordering Functions by Order Solution

$$
\begin{aligned}
& f_{9}(n)=10000 \quad(\text { constant, does not increase with } n) \\
& f_{5}(n)=\log (\log n) \quad \text { (grows slowest of all the others) } \\
& f_{3}(n)=(\log n)^{2} \quad(\text { grows next slowest }) \\
& \left.f_{6}(n)=n^{2}(\log n)^{3} \quad \text { (next largest, }(\log n)^{3} \text { factor smaller than any power of } n\right) \\
& f_{2}(n)=8 n^{3}+17 n^{2}+111 \quad \text { (tied with the one below) } \\
& f_{8}(n)=n^{3}+n(\log n)^{2} \\
& f_{1}(n)=(1.5)^{n} \quad(\text { next largest, an exponential function) } \\
& f_{4}(n)=2^{n} \quad(\text { grows faster than one above since } 2>1.5) \\
& f_{7}(n)=2^{n}\left(n^{2}+1\right) \quad \text { (grows faster than above because of the } n^{2}+1 \text { factor) } \\
& f_{10}(n)=n!\quad\left(n!\text { grows faster than } c^{n} \text { for every } c\right)
\end{aligned}
$$

Big-Omega Notation

Definition: Let f and g be functions from Z or R to R . $f(x)$ is $\Omega(g(x))$ if $\exists C$ and k such that

$$
|f(x)| \geq C|g(x)| \quad \text { when } x>k
$$

Ω is the upper case version of the lower case Greek letter ω.
" $f(x)$ is big-Omega of $g(x)$ " or " f asymptotically dominates g."

- Big- O gives an upper bound on the growth of a function, while Big-Omega gives a lower bound.
- Big-Omega tells us that a function grows at least as fast as another.

Big-Omega Notation

Example: Show that $f(x)=8 x^{3}+5 x^{2}+7$ is $\Omega(g(x)) \quad$ where $g(x)=x^{3}$.
Solution: $f(x)=8 x^{3}+5 x^{2}+7 \geq 8 x^{3} \forall x \in R$.
$\therefore f(x)$ is $\Omega(g(x))$ (Take $C=8$ and $k=1$)

- Is it also the case that $g(x)=x^{3}$ is $O\left(8 x^{3}+5 x^{2}+7\right)$?
- What can you take for C and k ?
- Can we generalize this observation?
- $f(x)$ is $\Omega(g(x))$ if and only if $g(x)$ is $O(f(x))$.
- This follows from the definitions. (See text for details.)
- If pair for LHS is C , k , we can take as pair for RHS $1 / \mathrm{C}, \mathrm{k}$.

Big-Theta Notation

Θ is the upper case version of the lower case Greek letter θ.

Definition: Let f and g be functions from Z or R to R . $f(x)$ is $\Theta(g(x))$ if $f(x)$ is $O(g(x))$ and $f(x)$ is $\Omega(g(x))$.

- We say that
- " $f(x)$ is big-Theta of $g(x)$ "
- " $f(x)$ is of order $g(x)$ "
- " $f(x)$ and $g(x)$ are of the same order."
- $f(x)$ is $\Theta(g(x))$ if and only if \exists constants C_{1}, C_{2} and k such that $C_{1} g(x)<f(x)<C_{2} g(x) \forall x>k$.
(This follows from the definitions of big-O and big-Omega.)

Big Theta Notation example 1

Example: Show that sum of first n positive integers is $\Theta\left(n^{2}\right)$.
Solution: Let $f(n)=1+2+\cdots+n$.

- We have already shown that $f(n)$ is $O\left(n^{2}\right)$.
- To show that $f(n)$ is $\Omega\left(n^{2}\right)$, we need a positive constant C such that $f(n)>C n^{2}$ for sufficiently large n. Summing only the terms $\geq n / 2$ we obtain the inequality. To ease calculations, we assume n even. We leave n odd case as exercise.

$$
\begin{aligned}
1+2+\cdots+n & \geq n / 2+(n / 2+1)+\cdots+n \\
& \geq n / 2+n / 2+\cdots+n / 2 \\
& =(\mathrm{n} / 2+1)(\mathrm{n} / 2) \geq n^{2} / 4
\end{aligned}
$$

- Taking $C=1 / 4, f(n)>C n^{2} \forall n \in \mathrm{Z}^{+}$. Hence, $f(n)$ is $\Omega\left(n^{2}\right)$.
- $\therefore f(n)$ is $\Theta\left(n^{2}\right)$.

Big-Theta Notation example 2

Example: Show that $f(x)=3 x^{2}+8 x \log x$ is $\Theta\left(x^{2}\right)$. Solution:

- $3 x^{2}+8 x \log x \leq 11 x^{2}$ for $x>1$, since $0 \leq 8 x \log x \leq 8 x^{2}$.
- Hence, $3 x^{2}+8 x \log x$ is $0\left(x^{2}\right)$.
(Why? What pair C, k have we shown to work?)
- $3 x^{2}+8 x \log x$ is clearly $\Omega\left(x^{2}\right)$.
(Why? What pair C, k works?)
- Hence, $3 x^{2}+8 x \log x$ is $\Theta\left(x^{2}\right)$.

Miscellaneous Θ facts/confusion

- If $f(x)$ is $\Theta(g(x))$ then $g(x)$ is $\Theta(f(x))$ as well.
- Also note that $f(x)$ is $\Theta(g(x))$ if and only if

$$
f(x) \text { is } O(g(x)) \text { and } g(x) \text { is } O(f(x))
$$

- partially accounting for why you see big-Omega infrequently.
- Writers are often careless and use big- O when they really mean big-Teta.

Big-Theta Estimates for Polynomials

Theorem: Let $f(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{1} x+a_{o}$ where $a_{0}, a_{1}, \ldots, a_{n}$ are real numbers with $a_{n} \neq 0$. Then $f(x)$ is $\Theta\left(x^{n}\right)$ (or of order x^{n}).
(The proof is an exercise.)
Examples:

$$
\begin{aligned}
& f(x)=8 x^{5}+5 x^{2}+10 \text { is } \Theta\left(x^{5}\right) \\
& f(x)=8 x^{199}+7 x^{100}+x^{99}+5 x^{2}+25 \text { is } \Theta\left(x^{199}\right)
\end{aligned}
$$

Classifying Functions by their Order

$$
\begin{array}{ll}
f_{9}(n)=10000 \text { is } & \Theta(1) \\
f_{5}(n)=\log (\log n) \text { is } & \Theta(\log (\log n)) \\
f_{3}(n)=\text { is } & \Theta\left((\log n)^{2}\right) \\
f_{6}(n)=n^{2}(\log n)^{3} \text { is } & \Theta\left(n^{2}(\log n)^{3}\right) \\
f_{2}(n)=8 n^{3}+17 n^{2}+111 n^{2} \text { is } & \Theta\left(n^{3}\right) \\
f_{8}(n)=n^{3}+n(\log n)^{2} \text { is } & \Theta\left(n^{3}\right) \\
f_{1}(n)=(1.5)^{n} \text { is } & \Theta\left((1.5)^{n}\right) \\
f_{4}(n)=2^{n} \text { is } & \Theta\left(2^{n}\right) \\
f_{7}(n)=2^{n}\left(n^{2}+1\right) \text { is } & \Theta\left(n^{2} 2^{n}\right) \\
f_{10}(n)=n!\text { is } & \Theta\left(n^{n}\right)
\end{array}
$$

