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The Growth of Functions
 In both CS and math:

 There are times when we care about how fast a function grows.

 In CS, the issue is known as complexity (section 3.3). Here 
are some questions that may arise:
 How quickly does an algorithm solve a problem as input grows?

 How does the efficiency of two different algorithms for solving 
the same problem compare?

 Is it practical to use a particular algorithm as the input grows?

 In math, growth of functions are studied in
 number theory (Chapter 4)  

 combinatorics (Chapters 6 and 8)
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Big-O Notation
Definition: Let f and g be functions from Z or R to R. 
f(x) is O(g(x)) if constants C and k such that

whenever  x > k. (illustration on next slide)

 This is read

 “f(x) is big-O of g(x)” or   

 “f is asymptotically dominated by g.”

 C and k are witnesses to relationship f(x) is O(g(x)).

 Only one pair of witnesses is needed. 
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Illustration of Big-O Notation

f(x) is O(g(x)
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Important Points re Big-O Notation

If one pair of witnesses, then infinitely many pairs.

 We can always make k or C larger and still maintain inequality                                
. 

 i.e., any pair C ̍ and k̍ where C < C̍ and k < k ̍ is also a pair of 
witnesses since                                         whenever x > k̍ > k.

You may see  “ f(x) = O(g(x))” instead of “ f(x) is O(g(x)).”  

 But this is abuse since there is no equality just inequality.
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More Important Points re Big-O
 It is ok to write f(x) ∊ O(g(x)), because  O(g(x)) represents 

the set of functions that are O(g(x)).

 When functions take on positive values only

 we drop the absolute value sign:

f(x) is O(g(x)) if ∃𝐶, 𝑘 > 0 such that ∀𝑥 > 𝑘, 𝑓 𝑥 ≤ 𝐶𝑔(𝑥)
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Using the Definition of Big-O Notation
Example: Show that                                      is            .

Solution:  Since when x  1,  x  x2 and 1  x2

 So can take C = 4 and k = 1 as witnesses

(see graph on next slide)

 Alternatively, when x  2, we have   2x ≤ x2 and 1  x2

 So can take C = 3 and k = 2 as witnesses instead.                                
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Illustration of Big-O Notation                                                                                                                     

is
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Big-O Notation continued
 Since both                                     and

are such that                                 and                               (why?).

We say that the two functions are of the same order.

(More on this later)

 If                                and ∀𝑥 > 𝑟, h(x)  g(x), then                              . 

[for the witness pair, choose the same C and let 𝑘′ = max(𝑘, 𝑟)]

 For many applications, the goal is to select the function g(x) in O(g(x)) as 
small as possible (up to multiplication by a constant, of course).
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Using the Definition of Big-O Notation
Example: Show that 7x2 is O(x3).

Solution: When x > 7, 7x2 < x3. Take C =1 and k = 7 
as witnesses to establish that 7x2 is O(x3).

(Would C = 7 and k = 1 work?)

Example: Show that n2 is  not O(n).

Solution: Suppose C, k for which n2 ≤ Cn, whenever 
n > k. Then  (by dividing both sides of n2 ≤ Cn) by n, 
then n ≤ C must hold for all n > k. A contradiction!
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Big-O Estimates for Polynomials
Let 

where                                 are real numbers with an ≠0. 

Then f(x) is O(xn).                           

Proof:  |f(x)| = |anxn + an-1 xn-1 + ∙∙∙ + a1x
1   + a0|

≤ |an|xn + |an-1| x
n-1 + ∙∙∙ + |a1|x

1 + |a0|

= xn (|an| + |an-1| /x + ∙∙∙ + |a1|/xn-1 + |a0|/ xn)

≤ xn (|an| + |an-1| + ∙∙∙ + |a1|+ |a0|)

Take C = |an| + |an-1| + ∙∙∙ + |a0| and k = 1. QED

 Leading term anxn of polynomial dominates its growth.  

Use triangle inequality, 
exercise, Section 1.8.

Assuming x > 1
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More Big-O Estimates
Example: Use big-O notation to estimate the sum of 
the first n positive integers.

Solution:

Hence
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More Big-O Estimates (cont)
Example: Use big-O notation to estimate n! and log n!

Solution:

*

Hence

Now apply log to * and use a property of logarithms

.

Hence, log(n!) is O(n∙log(n)) taking C = 1 and k = 1.
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Display of Growth of Functions

Note the difference in behavior of functions as n gets larger
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Who dominates who among 
logarithms, powers, and exponents?
 If d > c > 1, then nc is O(nd), but nd is not  O(nc). 

 If c > b > 1, then bn is O(cn), but cn is not  O(bn).

[exponentials and powers strictly dominate within 
their classes as expected]

 If  b > 1 and c and d are positive, then 

(logb n)c is O(nd), but nd is not O((logb n)c)

[any power strictly dominates a log power]

 If  b > 1 & d > 0, then nd is O(bn), but bn is not O(nd).

[any exponential strictly dominates a power]
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Combinations of Functions
 If  f1 (x) is O(g1(x)) and f2 (x) is O(g2(x)) then 

( f1 + f2 )(x) is O(max(|g1(x) |,|g2(x) |)).

(See next slide for proof)

 If  f1 (x) and f2 (x) are both O(g(x)) then 

( f1 + f2 )(x) is O(g(x)).

(See text for argument)                                                  

 If  f1 (x) is O(g1(x)) and f2 (x) is O(g2(x)) then 

( f1 f2 )(x) is O(g1(x)g2(x)).

(See text for argument)                                                  
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Combinations of Functions
If  f1 (x) is O(g1(x)) and f2 (x) is O(g2(x)) then 

( f1 + f2 )(x) is O(max(|g1(x) |,|g2(x) |)).

Proof:                                                        
By the definition of big-O notation, C1,C2 ,k1,k2 such that                                               
| f1 (x)| ≤ C1|g1(x)| when x > k1 and |f2 (x)| ≤ C2|g2(x)| when x > k2 .

|( f1 + f2 )(x)| = |f1(x) + f2(x)| 

≤ |f1 (x)| + |f2 (x)|      by the triangle inequality |a + b| ≤ |a| + |b|

≤ C1|g1(x)| + C2|g2(x)| 

≤ C1 g(x) + C2 g(x) where  g(x) = max(|g1(x)|,|g2(x)|)

= (C1 + C2) g(x)

= C g(x)           where C = C1 + C2 

Therefore |( f1 + f2 )(x)| ≤ C g(x) whenever x > k, where k = max(k1,k2)
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Ordering Functions by Order of Growth
Put in order so that each function is big-O of next function: 

 f1(n) = (1.5)n

 f2(n) = 8n3+17n2  +111

 f3(n) = (log n )2

 f4(n) = 2n

 f5(n) = log (log n)

 Start by finding the dominant term in the 2 functions that 
have multiple terms. 

 Use hierarchy--constant, log of log, powers of log, powers, 
exponential, factorial (nn)--to put into categories.

 Follow the usually clear hierarchy within each category.

 f6(n) = n2 (log n)3

 f7(n) = 2n (n2  +1)

 f8(n) = n3+ n(log n)2 

 f9(n) = 10000

 f10(n) = n!
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Ordering Functions by Order Solution
f9(n) = 10000       (constant, does not increase with n)

f5(n) = log (log n)     (grows slowest of all the others)

f3(n) = (log n )2 (grows next slowest)

f6(n) = n2 (log n)3   (next largest, (log n)3 factor smaller than any power of n)

f2(n) = 8n3+17n2  +111    (tied with the one below)

f8(n) = n3+ n(log n)2

f1(n) = (1.5)n   (next largest, an exponential function)

f4(n) = 2n (grows faster than one above since 2 > 1.5)

f7(n) = 2n (n2  +1)     (grows faster than above because of the n2  +1 factor)

f10(n) = n! ( n!  grows faster than cn for  every c)
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Big-Omega Notation
Definition: Let f and g be functions from Z or R to R. 

if  C and k such that

when x > k.

“f(x) is big-Omega of g(x)” or “f asymptotically dominates g.”

 Big-O gives an upper bound on the growth of a function, 
while Big-Omega gives a lower bound. 

 Big-Omega tells us that a function grows at least as fast as 
another.

Ω is the upper case 
version of the lower 
case Greek letter ω.
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Big-Omega Notation
Example:  Show that                                        is

where                  .

Solution:                                                    x  R.

\ (Take C = 8 and k = 1)
 Is it also the case that                         is                                       ?

 What can you take for C and k?

 Can we generalize this observation?

 f(x) is  Ω(g(x)) if and only if g(x) is O(f(x)). 

 This follows from the definitions. (See text for details.)

 If pair for LHS is C, k, we can take as pair for RHS 1/C, k.
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Big-Theta Notation
Definition: Let f and g be functions from Z or R to R. 

if and                            . 

 We say that 

 “f(x) is big-Theta of g(x)”

 “f(x) is of order g(x)” 

 “f(x) and g(x) are of the same order.”   

 if and only if constants C1 , C2 and k 
such that C1g(x) < f(x) < C2 g(x)   x > k. 

(This follows from the definitions of big-O and big-Omega.)

Θ is the upper case 
version of the lower 
case Greek letter θ.
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Big Theta Notation example 1
Example: Show that sum of first n positive integers is Θ(n2).

Solution: Let f(n) = 1 + 2 + ∙∙∙  + n.

 We have already shown that f(n) is O(n2).

 To show that f(n) is Ω(n2), we need a positive constant C such 
that f(n) > Cn2   for sufficiently large n.  Summing only the 
terms  n/2 we obtain the inequality. To ease calculations, we 
assume n even. We leave n odd case as exercise.

1 + 2 + ∙∙∙  + n ≥  n/2 + ( n/2 + 1) + ∙∙∙  + n

≥   n/2 + n/2 + ∙∙∙  + n/2

= (n/2 +1)(n/2) ≥  n2/4

 Taking C = ¼,  f(n) > Cn2 n  Z+. Hence, f(n) is Ω(n2). 

 \ f(n) is Θ(n2).
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Big-Theta Notation example 2
Example: Sh0w that f(x) = 3x2 + 8x log x is Θ(x2).

Solution: 

 3x2 + 8x log x  ≤  11x2  for x > 1,                                            
since 0 ≤ 8x log x ≤ 8x2 .

 Hence, 3x2 + 8x log x is O(x2).

(Why? What pair C, k have we shown to work?)

 3x2  + 8x log x is clearly Ω(x2 ).

(Why? What pair C, k works?)

 Hence, 3x2 + 8x log x is Θ(x2).
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Miscellaneous Q facts/confusion
 If then as well.

 Also note that                               if and only if 

and                             

 partially accounting for why you see big-Omega infrequently.

 Writers are often careless and use big-O when they really 
mean big-Teta.
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Big-Theta Estimates for Polynomials
Theorem: Let 

where                                 are real numbers with an ≠0. 

Then f(x) is Θ(xn) (or of order xn).

(The proof is an exercise.) 

Examples: 

is Θ(x5).

is Θ(x199) . 
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Classifying Functions by their Order

f9(n) = 10000 is Θ(1 )
f5(n) = log (log n) is Θ(log (log n))
f3(n) = is Θ((log n )2 )
f6(n) = n2 (log n)3 is Θ(n2 (log n)3 )
f2(n) = 8n3+17n2  +111 n2  is Θ(n3 )
f8(n) = n3+ n(log n)2is Θ(n3 )
f1(n) = (1.5)n is Θ((1.5)n)
f4(n) = 2n is Θ(2n)
f7(n) = 2n (n2  +1)  is Θ(n2 2n)
f10(n) = n! is Θ(nn)
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