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Chapter Summary
 Algorithms (3 class days)

 Example Algorithms 

 Algorithmic Paradigms

 Growth of Functions (2 class days)

 Big-O and other Notation

 Complexity of Algorithms (1 class day)



Section 3.1



Algorithm Section Summary
 Day 1

 Properties (Slides 5-10)

 Searching (Slides 11-15)

 Day 2/3

 Sorting (Slides 16-25)

 Day 3

 Greedy (Slides 26-34)

 Halting Problem (Slide 35-37)

 Be able to state what it is (proof optional)



Problems and Algorithms
In many domains problems that ask for output with 
specific properties when given valid input.

 In computer programming, an algorithm is a 
procedure or set of steps which

 takes valid input

 produces desired output.

 More generally, an algorithm is a finite set of precise 
instructions for calculations or for solving a problem.



Algorithms
Example: Describe algorithm for finding maximum

value or max in finite sequence of integers {a1, a2, …, an}

Solution: 
1. Set maximum: max = a1

2. Compare next integer in sequence to max
 If it is larger than max, set max equal to this integer.

3. Repeat previous step if more integers. If not, stop.

4. Upon termination, max is largest integer in sequence.

An actual implementation would depend on the 
computer programming language, although clearly there 
is need for a loop, which could either be “while” or “for”.

Abu Ja’far Mohammed Ibin Musa Al-Khowarizmi
(780-850), spent most of life in present-day Iraq



Pseudocode
 Algorithms can be described in English or in a particular 

programming language such as Java or Python.

 Pseudocode is an intermediate between an English language 
description & the coding using a programming language. 

 The form of pseudocode  we use is specified in Appendix 3. It 
uses some of the structures found in C++ and Java.

 Programmers can easily take the description of an algorithm in 
pseudocode & construct a program in a particular language. 

 Pseudocode allows us to analyze the number and type of steps  
required, independent of any particular implementation. 

 Compilers often have optimizing algorithms which may greatly 
improve the user-inputted code, but that is another story.



Properties of Algorithms
Input : An algorithm has input values from a specified set.

Output : The algorithm produces the output values from a 
specified set. The output values are the solution.

Correctness : An algorithm should produce the correct 
output values for each set of input values.

Finiteness, Effectiveness, Generality : An algorithm should 
produce the output after a finite # of steps for any input.



Finding Maximum Element

The algorithm in pseudocode:

 Does this algorithm have all the properties listed on 
the previous slide?

(Input, Output, Correctness, Finiteness, Effectiveness, Generality)

procedure max(a1, a2, …., an: integers)

max := a1

for i := 2 to n

if max < ai then max := ai

return max{max is the largest element}



Our Algorithm Problems
Three classes of problems will be studied in this section:

Searching1. : finding position of particular element in list.

Sorting2. : putting elements of list into increasing order.

Optimization3. : determining optimal value (max or min) 
of a particular quantity inputs.



Searching
The searching problem is to locate an element x in the 
list of a1,a2,...,an, or determine that it is not in the list.

 The solution is (first) location of term in list that equals 
x (i is the solution if  x = ai) or 0 if x is not in the list.

 For example, before boarding a plane,  airlines must 
check to see if a customer is on the no-fly list.

 We study two different algorithms:

 linear

 binary



Linear Search Algorithm
(for non-sorted sets)

The linear search algorithm locates an item in a list by examining elements in 
the sequence one at a time, starting at the beginning:

 First compare x with a1. If they are equal, return 1.

 If not, try a2. If x = a2, return 2.

 Keep going, & if no match found when entire list is scanned, return 0.

procedure linear search(x: integer; a1, a2, …,an: integers)
i := 1
while (i ≤ n and x ≠ ai)

i := i + 1
if i ≤ n then location := i
else location := 0
return location{location is the subscript of 1st term that 

equals x, or is 0 if x is not found}



Binary Search (for sorted sets)
 Assume input is list of items in increasing order.

 Algorithm begins by comparing element to be found with 
middle element. 

 If middle element is lower, search proceeds with upper half of list.

 If not, search proceeds with lower half of list.

 Repeat this process until we have a list of size 1.

 If element looked for is equal to this element, position is returned.

 Otherwise, 0 is returned to indicate that element was not found. 

 In Section 3.3, we show that binary search algorithm is efficient.



Binary Search pseudocode
procedure binary search(x: integer, a1, a2,…, an: increasing integers)

i := 1 {i is the left endpoint of interval}

j := n {j is right endpoint of interval}

while i < j

m := ⌊(i + j)/2⌋

if x > am then i := m + 1

else j := m

if x = ai then location := i

else location := 0

return location{location is the subscript i of the term ai equal to x, 

or 0 if x is not found} 



Binary Search example input
Example: The steps taken by a binary search for 19 in the list:

1  2  3  5  6  7  8  10  12  13  15  16  18  19  20  22

List has 1. 16 elements, so midpoint is 8. The value in the 8th position is 10.  Since 
19 > 10,  further search is restricted to  positions 9 through 16.

1  2  3  5  6  7  8  10 12  13  15  16  18  19  20  22

Midpoint of list (positions 2. 9 through 16)  is now 12th position with value of 16.    
Since 19 > 16,  further search is restricted to the 13th position and above.

1  2  3  5  6  7  8  10 12  13  15  16  18  19  20  22

Midpoint of current list is now 3. 14th position with a value of 19.  Since 19 ≯ 19,  
further search is restricted to the portion from 13th through the 14th positions .

1  2  3  5  6  7  8  10 12  13  15  16  18  19  20  22

Midpoint of the current list is now 4. 13th position with value of 18.  Since 19 > 18, 
search is restricted to the portion from the 14th position through the 14th.

1  2  3  5  6  7  8  10 12  13  15  16  18 19  20  22

Now list has single element and loop ends. Since 5. 19=19, location 14 is returned.



Sorting
To sort elements of a list is to put them in increasing order.

Example is files in directory, sorted using any one of several 
categories (name, size, type, date created, date modified)

Substantial computing resources are devoted to sorting

Many algorithms have been invented for sorting:

binary, insertion, bubble, selection, merge, quick, tournament

In Section 3.3, we discuss the efficiency of these algorithms.



Bubble Sort on a1,…,an
Bubble sort in n− 1 passes through a list, interchanges 
every pair of elements found to be out of order.

After the ith pass, the last i elements are in order, so the 
passes decrement in length for each new pass.

procedure bubblesort(a1,…,an: real numbers with n ≥ 2)

for i := 1 to n− 1

for j := 1 to n − i

if aj > aj+1 then interchange aj and aj+1

{a1,…, an is now in increasing order}



Bubble Sort on 3  2  4  1  5



Bubble Sort on 3  2  4  1  5



Bubble Sort on 3  2  4  1  5



Bubble Sort on 3  2  4  1  5



Insertion Sort
 Insertion sort begins with 2nd element. It compares 2nd

element with 1st and puts it before the 1st if it is not larger.

 Next the 3rd element is put into the correct position among 
the first 3 elements. 

 In each subsequent pass, the n+1st element is put into its 
correct position among the first n+1 elements.

 Linear search is used to find the correct position.



Insertion Sort
procedure insertion sort(a1,…,an: real numbers with n ≥ 2)

for j := 2 to n

i := 1

while aj > ai

i := i + 1

m := aj

for k := 0 to j − i − 1

aj-k := aj-k-1

ai := m

{Now a1,…,an is in increasing order}



Insertion Sort on 3  2  4  1  5
3 2  4  1  5 1st two positions are interchanged

2  3 4  1  5   3rd element remains in its position

2  3 4 1  5   4th element is placed at beginning

1 2  3 4 5    5th element remains in its position

1 2  3 4 5



Optimization
Optimization problems minimize or maximize some 
parameter over all possible inputs.

 Examples we will study are:
 Finding a route between two cities with smallest total mileage.

 Determining how to encode messages using fewest possible bits.

 Finding links between network nodes using least amount of fiber.

 Optimization problems often solved using a greedy 
algorithm, which makes the “best” choice at each step.



Greedy Algorithms
Making “best choice” at each step does not necessarily give 
optimal solution, but in many instances it does. 

 After specifying “best choice” at each step

 we show an optimal solution always produced;

 or find counterexample to show that it does not.

 Greedy approach is an example of algorithmic paradigm, 
a general approach for designing an algorithm. 

 We return to algorithmic paradigms in Section 3.3.



Example: Making Change
Make change of n = 67 cents with quarters, dimes, 

nickels, and pennies, using least total number of 
coins.

Idea: At each step choose coin with the largest possible 
value that does not exceed the amount of change left.

First choose quarter leaving 1. 67−25 = 42 & another 
quarter leaving 42 −25 = 17.

Then choose dime, leaving 2. 17 − 10 = 7.

Choose nickel, leaving 3. 7 – 5 = 2.

Choose penny, leaving 4. 1 & another penny leaving 0.



Greedy Change-Making Algorithm:
coin denominations  c1, c2, …,cr

For example of U.S. currency, we have quarters, dimes, 
nickels and pennies,  with c1 = 25, c2 = 10, c3 = 5, and c4 = 1.

procedure change(c1, c2, …, cr: values of coins,

where c1> c2> … > cr ;  n: a positive integer)

for i := 1 to r

di := 0 {di counts coins of denomination ci} 

while n ≥ ci

di := di + 1 {add a coin of denomination ci}

n := n  ci

{the sequence d1, d2, …, dr provides # of each coin needed}



Proving Optimality
If n Î Z+, then n cents in change using quarters, dimes, nickels, 
and pennies, using fewest coins possible has:

Lemma 1: at most 2 dimes, 1 nickel, 4 pennies, and cannot 
have 2 dimes and a nickel.

Proof: By contradiction

 If we had 3 dimes, we replace them with a quarter and a nickel. 

 If we had 2 nickels, we replace them with  1 dime.

 If we had 5 pennies, we replace them with a nickel.

 If we had 2 dimes & 1 nickel, we replace them with a quarter.

Lemma 2: total amount of change not in quarters £ 24 cents.

Proof: The allowable combinations, have a maximum value of 24
cents:  2 dimes and 4 pennies. 



Proving Optimality for U.S. Coins
Theorem: The greedy change-making algorithm for U.S. 

coins produces change using the fewest coins possible.

Proof: By contradiction.
Assume 1. n Î Z+ such that change can be made for n cents 
using quarters, dimes, nickels, and pennies, with a fewer 
total number of coins than given by the algorithm.

Suppose 2. q̍ < q where q̍ = #quarters used in this optimal 
way and q = #quarters in the greedy algorithm’s solution. 
But this is not possible by Lemma 2, since value of the coins 
other than quarters can not be greater than 24 cents.

Similarly, by Lemma 3. 1, the two algorithms must have the 
same number of dimes, nickels, and pennies (exercise).



Greedy Change-Making Algorithm 
Optimality depends on the denominations available.

 For U.S. coins, optimality still holds if we add half 
dollar coins (50 cents) and dollar coins (100 cents).

 But if we allow only quarters (25 cents), dimes (10
cents), and pennies (1 cent), the algorithm no longer 
produces the minimum number of coins.

 Consider the example of 31 cents. The optimal number 
of coins is 4, i.e., 3 dimes and 1 penny. What does the 
algorithm output?



Greedy Scheduling
Example: We have a group of proposed talks with start and 
end times. Construct a greedy algorithm to schedule as many 
as possible in a lecture hall, under the following assumptions:

When a talk starts, it continues till the end.

No two talks can occur at the same time.

A talk can begin at the same time that another ends.

Once we have selected some of the talks, we cannot add a talk 

which is incompatible with those already selected because it 
overlaps at least one of these previously selected talks.

How should we make the “best choice” at each step of the 

algorithm? That is, which talk do we pick ?
The talk that starts earliest among those compatible with already chosen talks?

The talk that is shortest among those already compatible?

The talk that ends earliest among those compatible with already chosen talks?



Greedy Scheduling
 Picking the shortest talk doesn’t work.

 Can you find a counterexample here?

 But picking the one that ends soonest does work. The 
algorithm is specified on the next page. 

Talk 2

Start:  9:00 AM

End: 10:00 AM

Talk 1

Start: 8:00 AM

End :9:45 AM
Talk 3

End: 11:00 AM

Start: 9:45 AM



Greedy Scheduling algorithm
Solution: At each step, choose talks with the earliest 

ending time among talks compatible with those selected.

Will be proven correct by induction in Chapter  5.

procedure schedule(s1 , s2 , … , sn : start times; e1 ,  e2 , … , en : end times)

sort talks by finish time {reorder so that e1 ≤ e2 ≤ … ≤ en }

S :=  ∅

for j := 1 to n

if talk j is compatible with S then 

S := S ∪ {talk j}

return S { S is the set of talks scheduled}



Halting Problem 
Develop a procedure that takes as input a computer 

program along with its input and determines whether 
the program will eventually halt with that input.

Solution: Proof by contradiction.

Assume that there is such a procedure and call it H(P,I).

Procedure H(P,I) takes as input program P & input I. 

H outputs “halt” if it is the case that  P will stop when 
run with input I. 

Otherwise,  H outputs “loops forever.”



Halting Problem (cont.)
Since a program is a string of characters, we call H(P,P). 
Construct a procedure K(P), which works as follows. 

 If H(P,P) outputs “loops forever” then K(P) halts.

 If H(P,P) outputs “halt” then K(P) goes into an infinite 
loop printing “ha” on each iteration.



Halting Problem (cont.)
Now we call K with K as input, i.e. K(K).

If the output of  H(K,K) is “loops forever” then K(K) 
halts. A Contradiction.

If the output of  H(K,K) is “halts” then K(K) loops 
forever. A Contradiction.

Hence, ∄ procedure that can decide whether or not an 
arbitrary program halts.

\ The halting problem is unsolvable. 


