Basic Structures: Sets, Functions, Sequences, Sums, and Matrices Chapter 2

With Question/Answer Animations

Chapter Summary

- Sets
 - The Language of Sets
 - Set Operations
 - Set Identities
- Functions
 - Types of Functions
 - Operations on Functions
 - Computability
- Sequences and Summations
 - Types of Sequences
 - Summation Formulae
- Set Cardinality
 - Countable Sets
- Matrices
 - Matrix Arithmetic

Cardinality of Sets

Section 2.5

Section Summary

- Cardinality
- Countable Sets
- Computability

Cardinality relationships

If \exists 1-1 function (injection) from A to B, the cardinality of A is less than or the same as the cardinality of B

$$|A| \leq |B|$$

If \exists 1-1 correspondence (bijection) from A to B, t he cardinality of a set A is equal that of B

$$|A| = |B|$$

If $|A| \le |B|$ and A & B have different cardinalities, the cardinality of A is less than the cardinality of B

Countable

A set that is either finite or has the same cardinality as **Z**⁺ is *countable*.

A set that is not countable is uncountable.

• The set of real numbers **R** is an uncountable set.

When a set is *countably infinite* its cardinality is \aleph_0 .

ℵ is aleph (the 1st letter of the Hebrew alphabet).

The zero subscript is pronounced "naught" or "null".

Showing that a Set is Countable

A 1-1 correspondence f from Z⁺ to a set S can be expressed in terms of a sequence $a_1, a_2, ..., a_n, ...$ where

$$a_1 = f(1), a_2 = f(2), ..., a_n = f(n), ...$$

So can list the elements of S in a sequence indexed by Z⁺.

Example: Z is countable:

$$0, 1, -1, 2, -2, \dots$$

It is a good exercise but not necessary to create an explicit formula for the sequence:

$$a_n = (-1)^n \lfloor n/2 \rfloor$$

Hilbert's Grand Hotel

The Grand Hotel (example due to David Hilbert) has countably infinite number of rooms, each occupied by a guest. We can always accommodate a new guest at this hotel. How is this possible?

The hotel can also accommodate a countable number of new guests, all the guests on a countable number of buses where each bus contains a countable number of guests (see exercises).

Explanation: Rooms are countable so we list them as R_1 , R_2 , R_3 , When a new guest arrives, we move guest in R_1 to R_2 , guest in R_2 to R_3 and in general guest in R_n to R_{n+1} , $\forall n \in \mathbb{Z}^+$. This frees up R_1 , which we assign to the new guest, and all the current guests still have rooms.

Countable example: even>0

Show that the set of **positive** even integers E^+ is a countable set.

Solution: Let $a_n = 2n$. Or using function notation, f(n) = 2n

Then f is a bijection from \mathbf{N} to E since f is both 1-1 and onto.

To show 1-1, if f(n) = f(m), then 2n = 2m, and so n = m.

To show onto, suppose that *t* is an even positive integer.

Then t = 2k for some positive integer k and f(k) = t.

Countable example: even Z

Show that the set of even integers *E* is a countable set.

Solution: Can list in a sequence:

$$0, 2, -2, 4, -4, \dots$$

Or can define a bijection from **Z**⁺ to even **Z**:

$$a_n = (-1)^n 2 \lfloor n/2 \rfloor$$

Q⁺ is Countable

Recall: A *rational number* can be expressed as the ratio of two integers p and q such that $q \neq 0$.

- ³/₄ is a rational number
- $\sqrt{2}$ is not a rational number.

Example: Show Q⁺ is Countable.

Solution: Q⁺ can be arranged in a sequence:

$$r_1, r_2, r_3, \dots$$

The next slide shows how this is done.

Q⁺ is Countable

Study table carefully.

- What is common in each row?
- What is common in each column?

Terms not circled are not listed because they repeat previously listed terms

Constructing List

First visit p/q with p + q = 2. Next visit p/q with p + q = 3.

And so on.

1, $\frac{1}{2}$, 2, 3, $\frac{1}{3}$, $\frac{1}{4}$, $\frac{2}{3}$, $\frac{3}{2}$, 4, 5, $\frac{1}{5}$, $\frac{1}{6}$, $\frac{2}{5}$, $\frac{3}{4}$, $\frac{4}{3}$, $\frac{5}{2}$, 6, Coming up with an explicit formula would not be advised. **Instead write a computer program!**

Strings

Given finite alphabet *A*, show S = {finite strings} is countably infinite.

Solution: Assume alphabetical ordering of symbols in A and list strings in a sequence:

- 1. string of length 0 (empty string λ);
- 2. strings of length 1 in lexicographic (dictionary) order;
- 3. strings of length 2 in lexicographic order;
- 4. and so on.

This \Rightarrow ∃bijection from **Z**⁺ to *S* & hence S is countably ∞ .

{all possible Java programs} is countably ∞.

Example: Show that the set of all Java programs is countable.

Solution: Let $S = \{\text{strings}\}$ constructed from the characters which can appear in a Java program. Use ordering from previous example.

- Take each string in turn and feed into a compiler.
- Compiler will determine if input program is syntactically correct.
 - If compiler says YES, we add program to list.
- We move on to the next string.

In this way we construct an implied bijection from N to the set of Java programs. Hence, the set of Java programs is countable.

R is Uncountable!

Georg Cantor (1845-1918)

Proof method is *Cantor diagonalization* and is by contradiction. We focus on subset [0, 1] & assume that its elements are listable:

$$r_1, r_2, r_3, \dots$$

Let decimal representation of this listing be $r_1 = 0.d_{11}d_{12}d_{13}d_{14}d_{15}d_{16}\dots$

$$r_1 = 0.a_{11}a_{12}a_{13}a_{14}a_{15}a_{16} \dots$$

 $r_2 = 0.d_{21}d_{22}d_{23}d_{24}d_{25}d_{26} \dots$
 $r_3 = 0.d_{31}d_{32}d_{33}d_{34}d_{35}d_{36} \dots$

•

Form new real # $r = .r_1r_2r_3r_4 \dots$ where

$$r_i = 3 \text{ if } d_{ii} \neq 3 \text{ and } r_i = 4 \text{ if } d_{ii} = 3$$

r is not equal to any of the r_1 , r_2 , r_3 ,... because it differs from r_i in its ith position after the decimal point.

∴ \exists r ∈ [0, 1] that is not on list (every real # has! decimal expansion). Hence, [0, 1] cannot be listed, & [0, 1] is uncountable.

Since a set with an uncountable subset is uncountable (exercise):

R is uncountable!

Computability

We say that a function is *computable* if \exists a computer program in some programming language that finds the values of this function.

- If a function is not computable we say it is uncomputable.
- ∃uncomputable functions.
 - We have shown that the set of Java programs is countable.
 - Exercise 38 in text shows that ∃uncountably many different functions from a particular countably infinite set to itself.
 - ∴ by Exercise 39, ∃ uncomputable functions!