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Chapter Summary
 Sets 

 The Language of Sets
 Set Operations
 Set Identities

 Functions
 Types of Functions
 Operations on Functions
 Computability

 Sequences and Summations
 Types of Sequences
 Summation Formulae

 Set Cardinality
 Countable Sets

 Matrices
 Matrix Arithmetic
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Section Summary
 Cardinality

 Countable Sets

 Computability



Cardinality relationships
If  1-1 function (injection) from A to B, the cardinality 
of A is less than or the same as the cardinality of B

|A| ≤ |B|

If  1-1 correspondence (bijection) from A to B, the 
cardinality of a set A is equal that of B

|A| = |B|

If |A| ≤ |B| and A & B have different cardinalities, the 
cardinality of A is less than the cardinality of B

|A| < |B|



Countable 
A set that is either finite or has the same cardinality as Z+

is countable.

A set that is not countable is uncountable.

 The  set of real numbers R is an uncountable set.

When a set is countably infinite its cardinality is ℵ0 .

ℵ is aleph (the 1st letter of the Hebrew alphabet).

The zero subscript is pronounced “naught” or “null”.



Showing that a Set is Countable
A 1-1 correspondence f from Z+ to a set S can be expressed 
in terms of a sequence  a1 , a2 , …, an ,… where

a1 = f (1), a2 = f (2),…, an = f (n),… 

So can list the elements of S in a sequence indexed by Z+.

Example: Z is countable:

0, 1, 1, 2, 2, …

It is a good exercise but not necessary to create an 
explicit formula for the sequence:

an = (1)n n/2



Hilbert’s Grand Hotel
The Grand Hotel (example due to David Hilbert) has countably infinite number of 

rooms, each occupied by a guest. We can always  accommodate a new guest at this 
hotel. How is this possible?

David Hilbert

Explanation: Rooms are countable so we 
list them as R1, R2 , R3, … . When a new 
guest arrives, we move guest in R1 to R2, 
guest in R2 to R3 and in general guest in Rn 

to Rn+1 , n ÎZ+.   This frees up R1, which 
we assign to the new guest, and all the 
current guests still have rooms. 

The hotel can also accommodate a 
countable number of new guests, all the 
guests on a countable number of buses 
where each bus contains a countable 
number of guests (see exercises).



Countable example: even>0
Show that the set of positive even integers E+ is a countable set.

Solution: Let an = 2n. Or using function notation, f (n) = 2n

1    2    3    4    5     6  …..

2    4    6    8    10  12  ……

Then f is a bijection from N to E since f is both 1-1 and onto.

To show 1-1, if f(n) = f(m), then 2n  = 2m, and so n = m.

To show onto, suppose that t is an even positive integer.

Then t = 2k for some positive integer k and f(k) = t. 



Countable example: even Z
Show that the set of even integers E is a countable set.

Solution: Can list in a sequence:

0, 2, − 2, 4, − 4,………..

Or can define a bijection from Z+ to even Z:

an = (1)n 2 n/2



Q+ is Countable
Recall: A rational number can be expressed as the ratio 
of two integers p and q such that q ≠ 0.

 ¾ is a rational number

 √2 is not a rational number.

Example: Show Q+ is Countable.

Solution: Q+ can be arranged in a sequence:

r1 , r2 , r3 ,…   

The next slide shows how this is done.                →



Q+ is Countable

Constructing List
First visit p/q with p + q = 2.
Next visit p/q with p + q = 3.
And so on.

1, ½, 2, 3, 1/3, ¼ , 2/3, 3/2, 4, 5, 1/5, 1/6, 2/5, ¾, 4/3, 5/2, 6, ….
Coming up with an explicit formula would not be advised.
Instead write a computer program!

Study table carefully.
• What is common 

in each row?
• What is common 

in each column?



Strings
Given finite alphabet A, show S = {finite strings} is 

countably infinite.

Solution: Assume alphabetical ordering of symbols in A

and list strings in a sequence:

1. string of length 0 (empty string l);

2. strings of length 1 in lexicographic (dictionary) order;

3. strings of length 2 in lexicographic order;

4. and so on.

This Þ bijection from Z+ to S & hence S is countably ¥.



{all possible Java programs} is countably ¥.
Example:  Show that the set of all Java programs is countable.

Solution: Let S = {strings} constructed from the characters 
which can appear in a Java program. Use ordering from 
previous example.

 Take each string in turn and feed into a compiler. 

 Compiler will determine if input program is syntactically correct. 

 If compiler says YES, we add program to list.

 We move on to the next string.

In this way we construct an implied bijection from N to the set 
of Java programs. Hence, the set of Java programs is countable.



R is Uncountable!
Proof method is Cantor diagonalization and is by contradiction.
We focus on subset [0, 1] & assume that its elements are listable:

r1 , r2 , r3 ,… .
Let decimal representation of this listing be

Form new real # where

r is not equal to any of the r1 , r2 , r3 ,...  because it differs from ri in its
ith position after the decimal point.

\  r Î [0, 1] that is not on list (every real # has ! decimal expansion). 
Hence, [0, 1] cannot be listed, & [0, 1] is uncountable.
Since a set with an uncountable subset is uncountable (exercise):

R is uncountable!

Georg Cantor
(1845-1918)



Computability
We say that a function is computable if  a computer 
program in some programming language that finds the 
values of this function.

 If a function is not computable we say it is uncomputable. 

 uncomputable functions.

 We have shown that the set of Java programs is countable.

 Exercise 38 in text shows that uncountably many different 
functions from a particular countably infinite set to itself.

 \by Exercise 39,  uncomputable functions!


