Basic Structures: Sets,

 Functions, Sequences, Sums, and Matrices
Chapter 2

With Question/Answer Animations

Chapter Summary

- Sets
- The Language of Sets
- Set Operations
- Set Identities
- Functions
- Types of Functions
- Operations on Functions
- Computability
- Sequences and Summations
- Types of Sequences
- Summation Formulae
- Set Cardinality
- Countable Sets
- Matrices
- Matrix Arithmetic

Sequences and Summations

Section 2.4

Section Summary

- Sequences.
- Examples: Geometric Progression, Arithmetic Progression
- Recurrence Relations
- Example: Fibonacci Sequence
- Summations
- Special Integer Sequences

List definition \& introduction

- Sequences are ordered lists of elements.
- 1, 2, 3, 5, 8
- $1,3,9,27,81, \ldots . .$.
- Sequences arise in mathematics, computer science, and many other disciplines, e.g., botany \& music.
- We will introduce the terminology to represent sequences and sums of the terms in the sequences.

Function definition \& notation

A sequence is a function from a subset of the integers (usually either $\{0,1,2, \ldots .$.$\} or \{1,2,3, \ldots$.$\}) to a set S$.

- In place of $a(n)$, use a_{n} to denote the image of $n \in \mathbf{Z}$.
- We call a_{n} a term of the sequence.

Notation options

Example: Consider the harmonic sequence

$$
\left\{a_{n}\right\}=\left\{a_{1}, a_{2}, a_{3}, \ldots\right\}
$$

where

$$
a_{n}=\frac{1}{n} \quad 1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4} \ldots
$$

Geometric Progression

A geometric progression is a sequence of the form:

$$
a, a r, a r^{2}, \ldots, a r^{n}, \ldots
$$

with initial term a and common ratio r, both real \#'s.
Examples:

1. Let $a=1$ and $r=-1$. Then:

$$
\left\{b_{n}\right\}=\left\{b_{0}, b_{1}, b_{2}, b_{3}, b_{4}, \ldots\right\}=\{1,-1,1,-1,1, \ldots\}
$$

2. Let $a=2$ and $r=5$. Then:

$$
\left\{c_{n}\right\}=\left\{c_{0}, c_{1}, c_{2}, c_{3}, c_{4}, \ldots\right\}=\{2,10,50,250,1250, \ldots\}
$$

3. Let $a=6$ and $r=1 / 3$. Then:

$$
\left\{d_{n}\right\}=\left\{d_{0}, d_{1}, d_{2}, d_{3}, d_{4}, \ldots\right\}=\left\{6,2, \frac{2}{3}, \frac{2}{9}, \frac{2}{27}, \ldots\right\}
$$

Arithmetic Progression

An arithmetic progression is a sequence of the form:

$$
a, a+d, a+2 d, \ldots, a+n d, \ldots
$$

with initial term a and common difference d, both real \#'s.

Examples:

1. Let $a=-1$ and $d=4$:

$$
\left\{s_{n}\right\}=\left\{s_{0}, s_{1}, s_{2}, s_{3}, s_{4}, \ldots\right\}=\{-1,3,7,11,15, \ldots\}
$$

2. Let $a=7$ and $d=-3$:

$$
\left\{t_{n}\right\}=\left\{t_{0}, t_{1}, t_{2}, t_{3}, t_{4}, \ldots\right\}=\{7,4,1,-2,-5, \ldots\}
$$

3. Let $a=1$ and $\mathrm{d}=2$:

$$
\left\{u_{n}\right\}=\left\{u_{0}, u_{1}, u_{2}, u_{3}, u_{4}, \ldots\right\}=\{1,3,5,7,9, \ldots\}
$$

Strings

A string is a finite sequence of characters from a finite set (e.g., the alphabet).

- Sequences of characters or bits are important in computer science.
- The empty string is represented by λ.
- The string abcde has length 5.

Recurrence Relations

A recurrence relation is an equation that expresses a_{n} in terms of one or more of $a_{0}, a_{1}, \ldots, a_{n-1}$

- The relation is valid for $\forall \mathrm{n} \geq \mathrm{n}_{\mathrm{o}}$ where $\mathrm{n}_{\mathrm{o}} \in \mathrm{Z}^{+}$.
- Initial conditions specify the terms a_{n} for $\mathrm{n}<\mathrm{n}_{0}$.
- A sequence is called a solution of a recurrence relation if its terms satisfy the recurrence relation.

Recurrence Relation Questions

Example 1: Given recurrence relation $a_{n}=a_{n-1}+3$ for $n_{o}=1$ and $a_{0}=2$. What are a_{1}, a_{2} and a_{3} ?
[Here $a_{o}=2$ is the single initial condition.]
Solution: We see from the recurrence relation that

$$
\begin{aligned}
& a_{1}=a_{o}+3=2+3=5 \\
& a_{2}=5+3=8 \\
& a_{3}=8+3=11 \quad \text { and so on }
\end{aligned}
$$

Does anyone recognize this sequence?

Recurrence Relations Questions

Example 2: Let $a_{n}=a_{n-1}-a_{n-2}, n_{o}=2$ and $a_{0}=3, a_{1}=5$.
What are $a_{2}, a_{3}, a_{4}, a_{5}$ and a_{6} ?
[Here the initial conditions is the pair $a_{o}=3, a_{1}=5$.]
Solution: We see from the recurrence relation that

$$
\begin{aligned}
& a_{2}=a_{1}-a_{0}=5-3=2 \\
& a_{3}=a_{2}-a_{1}=2-5=-3 \\
& a_{4}=a_{3}-a_{2}=-3-2=-5 \\
& a_{5}=a_{4}-a_{3}=-5-(-3)=-2 \\
& a_{6}=a_{5}-a_{4}=-2-(-5)=3
\end{aligned}
$$

What is overall shape?
Quadratic (parabola)? Periodic (like a sin curve)?

Fibonacci Sequence

$$
f_{n}=f_{n-1}+f_{n-2}, n_{o}=2 \text { and } f_{0}=0, f_{1}=1
$$

Example: Find $f_{2}, f_{3}, \ldots, f_{6}$.
Answer:

$$
\begin{aligned}
& f_{2}=f_{1}+f_{0}=1+0=1 \\
& f_{3}=f_{2}+f_{1}=1+1=2 \\
& f_{4}=f_{3}+f_{2}=2+1=3 \\
& f_{5}=f_{4}+f_{3}=3+2=5 \\
& f_{6}=f_{5}+f_{4}=5+3=8
\end{aligned}
$$

f_{n} is \#pairs of rabbits after n months, where a new pair does not breed its $1^{\text {st }}$ month but produces 1 new pair of offspring each month thereafter.

Solving Recurrence Relations

Often, we solve (find a closed formula) for the $n^{\text {th }}$ term:

- In this chapter, we use methods of iteration where we guess the formula.
- The guess can be proved correct by induction (Chap 5).
- Chapter 8 has various advanced methods for solving.

Forward Iterative Solution

$$
\begin{gathered}
a_{n}=a_{n-1}+3, n_{o}=2, a_{1}=2 . \\
a_{2}=2+3 \\
a_{3}=(2+3)+3=2+2 \cdot 3 \\
a_{4}=(2+2 \cdot 3)+3=2+3 \cdot 3 \\
\vdots \\
a_{n}=2+3(n-1)
\end{gathered}
$$

Backward Iterative Solution

$$
\begin{aligned}
a_{n}= & a_{n-1}+3, n_{o}=2, a_{1}=2 \\
a_{n} & =a_{n-1}+3 \\
& =\left(a_{n-2}+3\right)+3=a_{n-2}+3 \cdot 2 \\
& =\left(a_{n-3}+3\right)+3 \cdot 2=a_{n-3}+3 \cdot 3 \\
& =a_{2}+3(n-2) \\
& =\left(a_{1}+3\right)+3(n-2) \\
& =2+3(n-1)
\end{aligned}
$$

Financial Application

Example: Suppose that a person deposits $\$ 10,000.00$ in a savings account at a bank yielding 11% per year with interest compounded annually. How much will be in the account after 30 years?
Let P_{n} denote the amount in the account after 30 years. P_{n} satisfies the following recurrence relation:

$$
\begin{aligned}
& P_{n}=P_{n-1}+0.11 P_{n-1}=(1.11) P_{n-1} \\
& \quad \quad \text { with the initial condition } P_{\mathrm{o}}=10,000
\end{aligned}
$$

Continued on next slide \rightarrow

Financial Application

$$
P_{n}=P_{n-1}+0.11 P_{n-1}=(1.11) P_{n-1}, P_{\mathrm{o}}=10,000
$$

Solution: Forward Substitution

$$
\begin{aligned}
& P_{1}=(1.11) P_{\mathrm{o}} \\
& P_{2}=(1.11) P_{1}=(1.11)^{2} P_{\mathrm{o}} \\
& P_{3}=(1.11) P_{2}=(1.11) P_{0} \\
& \quad: \\
& P_{n}=(1.11) P_{n-1}=(1.11)^{n} P_{\mathrm{o}} \\
&=(1.11)^{n} 10,000 \\
& P_{30}=(1.11)^{30} 10,000=\$ 228,992.97
\end{aligned}
$$

Identifying Integer Sequences

Given a few terms of a sequence, try to identify sequence. Conjecture formula, recurrence relation, or other rule.

- Some questions to ask, tools to use:
- Are there repeated terms of the same value?
- Can you obtain term from previous term adding (arithmetic) or multiplying (geometric)by an amount?
- Can you obtain a term by combining the previous terms?
- Are their cycles among the terms?
- (online encyclopedia of integer sequences)

Questions on Integer Sequences

Example 1: $1,1 / 2,1 / 4,1 / 8,1 / 16, \ldots$
Solution: Denominators are powers of 2;
geometric progression with $a=1$ and $r=1 / 2: a_{n}=1 / 2^{n}$
Example 2: 1,3,5,7,9,...
Solution: Term obtained by adding 2 to previous term; arithmetic progression with $a=1, d=2: \quad a_{n}=2 n+1$ Example 3: 1, $-1,1,-1,1, \ldots$
Solution: Terms alternate between 1 and -1 ; geometric progression with $a=1, r=-1: a_{n}=(-1)^{n}$

TABLE 1 Some Useful Sequences.

nth Term	First 10 Terms
n^{2}	$1,4,9,16,25,36,49,64,81,100, \ldots$
n^{3}	$1,8,27,64,125,216,343,512,729,1000, \ldots$
n^{4}	$1,16,81,256,625,1296,2401,4096,6561,10000, \ldots$
2^{n}	$2,4,8,16,32,64,128,256,512,1024, \ldots$
3^{n}	$3,9,27,81,243,729,2187,6561,19683,59049, \ldots$
$n!$	$1,2,6,24,120,720,5040,40320,362880,3628800, \ldots$
f_{n}	$1,1,2,3,5,8,13,21,34,55,89, \ldots$

Finding Sequences

Example: Find simple formula for a_{n} if $1^{\text {st }} 10$ terms are $1,7,25,79,241,727,2185,6559,19681,59047$.
Solution: Ratio of each term to the previous ≈ 3.
So now compare with the sequence 3^{n}.
We notice that the $n^{\text {th }}$ term is 2 less than the corresponding power of 3 so

$$
a_{n}=3^{n}-2
$$

Integer Sequence Puzzles

Identify these 3 sequences from the OEIS site:

1. $2,3,3,5,10,13,39,43,172,177$,...

Think of alternatively adding \& multiplying by successive \#s.
2. $0,0,0,0,4,9,5,1,1,0,55, \ldots$ one, two, three, four, five, six, seven, eight, nine, ten, eleven, ... and think like a Roman! (c,d,i,l,m,v,x)
3. $2,4,6,30,32,34,36,40,42,44,46, \ldots$

Think of the English names for numbers, and whether or not they have the letter 'e.'
The answers and many more can be found at
http://oeis.org/Spuzzle.html

Summations

Sum of terms $a_{m}, a_{m+1}, \ldots, a_{n}$ from sequence $\left\{a_{n}\right\}$

$$
\begin{array}{ccc}
{ }^{\text {is }} & a_{m}+a_{m+1}+\cdots+a_{n} \\
\sum_{j=m}^{n} a_{j} & \sum_{j=m}^{n} a_{j} & \sum_{m \leq j \leq n} a_{j} \\
\text { Display } & \text { Inline } & \text { Subscript }
\end{array}
$$

- Variable j is the index of summation.

It runs through all the integers starting with its lower limit m and ending with its upper limit n.

Summations

More generally, for set S, the sum of all its elements is:

Examples:

$$
\sum_{j \in S} a_{j}
$$

- Sum of powers o,1,..,n (special case of geometric)

$$
r^{0}+r^{1}+r^{2}+r^{3}+\cdots+r^{n}=\sum_{0} r^{j}
$$

- Harmonic: it diverges (gets arbitrarily large)

$$
1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\cdots=\sum_{1}^{\infty} \frac{1}{i}
$$

$$
\text { If } S=\{2,5,7,10\} \text { then } \sum_{j \in S} a_{j}=a_{2}+a_{5}+a_{7}+a_{10}
$$

Product Notation

- Product of the terms $a_{m}, a_{m+1}, \ldots, a_{n}$
from the sequence $\left\{a_{n}\right\}$ is

$$
a_{m} \times a_{m+1} \times \cdots \times a_{n}
$$

- Some possible notations:

$$
\begin{array}{ccc}
\prod_{j=m}^{n} a_{j} & \prod_{j=m}^{n} a_{j} & \prod_{m \leq j \leq n} a_{j} \\
\text { display } & \text { inline } & \text { subscript }
\end{array}
$$

Geometric Series

Sums of terms of geometric progressions

Example: A full binary

$$
\sum_{j=0}^{n} a r^{j}= \begin{cases}\frac{a r^{n+1}-a}{r-1} & r \neq 1 \\ (n+1) a & r=1\end{cases}
$$ tree of depth 3 has $1+2+4+8=\frac{1 * 16-1}{2-1}=15$ nodes (pictured on right) and one of depth 10 has $1+2+\ldots+1024=\frac{1 * 2048-1}{2-1}$

$=2047$ nodes

Geometric Series: proof $(r \neq 1)$

$$
\begin{aligned}
& r S_{n}=r \sum_{j=0}^{n} a r^{j} \quad \text { First multiply both sides of the equality by } \mathrm{r} \\
& =\sum_{j=0}^{n} a r^{j+1} \quad \text { Move factor of } \mathrm{r} \text { into the summation } \\
& =\sum_{k=1}^{n+1} a r^{k} \quad \text { Shifting the index of summation with } k=j+1 . \\
& =\left(\sum_{k=0}^{n} a r^{k}\right)+\left(a r^{n+1}-a\right) \quad \begin{array}{l}
\text { Removing } k=n+1 \text { term and } \\
\text { adding } k=0 \text { term. }
\end{array} \\
& =S_{n}+\left(a r^{n+1}-a\right) \quad \text { Substituting } S_{n} \text { for summation formula } \\
& r S_{n}=S_{n}+\left(a r^{n+1}-a\right) \quad S_{n}=\frac{a r^{n+1}-a}{r-1} \quad \text { Solving for } S_{n}
\end{aligned}
$$

Some Useful Summation Formulae

TABLE 2 Some Useful Summation Formulae.

Sum	Closed Form
$\sum_{k=0}^{n} a r^{k}(r \neq 0)$	$\frac{a r^{n+1}-a}{r-1}, r \neq 1$
$\sum_{k=1}^{n} k$	$\frac{n(n+1)}{2}$
$\sum_{k=1}^{n} k^{2}$	$\frac{n(n+1)(2 n+1)}{6}$
$\sum_{k=1}^{n} k^{3}$	$\frac{1}{1-x}$
$\sum_{k=0}^{\infty} x^{k},\|x\|<1$	
$\sum_{k=1}^{\infty} k x^{k-1},\|x\|<1$	$\frac{1}{(1-x)^{2}}$
just proved this. Weometric Series: We	
will prove	
some of	
these by	

